Return to search

Search for selection pressures associated with aggregation propensity following whole genome duplication in S.cerevisiae.

It has been theorized that most proteins are under selection pressure to be soluble in crowded cellular spaces. To maintain solubility a proteins’ aggregation propensity should be inversely proportional to their maximum likely concentration. This theory was examined by comparing the proteome of the model organism S. cerevisiae, which has previously undergone a Whole Genome Duplication (WGD) event to the proteome of the closely related yeast K. waltii, which has not undergone WGD. This comparison revealed the following: 1) Predicted aggregation propensities are higher in S. cerevisiae than K. waltii. 2) Aggregation propensity does not predict which genes reverted to a single copy after WGD. 3) In genes which were retained as duplicates in S. cerevisiae after WGD, aggregation propensities rose from the inferred common ancestral protein. 4) Genes retained as duplicates showed less of an increase relative to their homologues in K. waltii than genes which were not retained as duplicates. 5) The relationship between the log predicted aggregation propensity and log mRNA expression level or log protein abundance was not linear as previously predicted. These results suggest that while there is broad selection pressure for reduced aggregation pressure for genes which have been duplicated, the precise relationship between aggregation propensity and gene expression is more complicated than previously predicted. These results also allow speculation that the whole genome duplication in S.cerevisiae may have been made possible by a general relaxation of aggregation-related selection pressure. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/ETD-UT-2011-12-4528
Date15 February 2012
CreatorsWittig, Michael David
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
Typethesis
Formatapplication/pdf

Page generated in 0.0017 seconds