In this paper we will investigate the connection between a random walk and a continuous time stochastic process. Donsker's Theorem states that a random walk under certain conditions will converge to a Wiener process. We will provide a detailed proof of this theorem which will be used to prove that a geometric random walk converges to a geometric Brownian motion.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:mdh-48719 |
Date | January 2020 |
Creators | Bernergård, Zandra |
Publisher | Mälardalens högskola, Akademin för utbildning, kultur och kommunikation |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0015 seconds