Repeat photography, the process of retaking an existing photograph from the same vantage point, can give insight into long-term land cover dynamics. I advance the use of repeat photography to quantify landscape change in two ways: first, I demonstrate that rigorous field and post-processing methods can lead to highly accurate co-registration of images; second, I show that oblique photographs can provide land cover composition information similar to conventional satellite (Landsat) imagery for dominant land cover types, and that oblique photographs are better at resolving narrow or steep landscape features. I then present a novel approach to evaluate long-term biodiversity change using repeat photography: I measure land cover composition in 46 historical and modern photograph pairs in the Willmore Wilderness Park, Alberta, Canada, and use that land cover information as input into species-habitat models to predict the probability of occurrence of 15 songbird species. I show that coniferous forest cover increased over the past century, leading to a homogenization of the landscape which increased the probability of occurrence of forest-adapted species but negatively impacted non-forest-adapted species. / Graduate / 2019-04-18
Identifer | oai:union.ndltd.org:uvic.ca/oai:dspace.library.uvic.ca:1828/9296 |
Date | 30 April 2018 |
Creators | Fortin, Julie |
Contributors | Higgs, Eric |
Source Sets | University of Victoria |
Language | English, English |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Rights | Available to the World Wide Web |
Page generated in 0.002 seconds