Return to search

Small-scale Wind Energy Portable Turbine (SWEPT)

Large Scale Wind Turbines (LSWTs) have been extensively examined for decades but very few studies have been conducted on the small scale wind turbines (SSWTs) especially for the applications near ground level where wind speed is of order of few meters per second. This study provides the first systematic effort towards design and development of SSWTs (rotor diameter<50 cm) targeted to operate at low wind speeds (<5 m/s). An inverse design and optimization tool based on Blade Element Momentum theory is proposed. The utility and efficacy of the tool was validated by demonstrating a 40 cm diameter small-scale wind energy portable turbine (SWEPT) operating in very low wind speed range of 1 m/s-5 m/s with extremely high power coefficient. In comparison to the published literature, SWEPT is one of the most efficient wind turbines at the small scale and very low wind speeds with the power coefficient of 32% and overall efficiency of 21% at its rated wind speed of 4.0 m/s. It has very low cut-in speed of 1.7 m/s. Wind tunnel experiments revealed that SWEPT has rated power output of 1 W at 4.0 m/s, and it is capable of producing power output up to 9.3 W at wind speed of 10 m/s. The study was further extended to develop a piezoelectric wind turbine which operates below 2.0 m/s wind speed. The piezoelectric wind turbine of overall dimension of 100mm x 78mm x 65mm is capable of producing peak electric power of about 450 microwatt at the rated wind speed of 1.9 m/s. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/23099
Date24 May 2013
CreatorsKishore, Ravi Anant
ContributorsMechanical Engineering, Priya, Shashank, O'Brien, Walter F. Jr., Tafti, Danesh K.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0019 seconds