Return to search

Generation adequacy assessment of power systems with significant wind generation : a system planning and operations perspective

One of the great challenges to increasing the use of wind generation is the need to ensure generation adequacy. In this dissertation, we address that need by investigating and assessing the planning and operational generation adequacy of power systems with significant wind generation. At the onset of this dissertation, key metrics are presented for determining a power system’s generation adequacy assessment based on loss-of-load analytical
methods. With these key metrics understood, a detailed methodology is put forward on how to integrate wind plants in the assessment’s framework. Then, through the examination of a case study, we demonstrate that wind generation does contribute capacity to the system generation adequacy. Indeed, results indicates that at wind penetration levels of less than 5%, a wind plant’s reliability impact is comparable to an energy equivalent conventional unit. We then show how to quantify a wind plant’s capacity contribution by using the effective load carrying capability metric (ELCC), providing a detailed description of how to implement this metric in the context of wind generation. However,
as certain computational setbacks are inherent to the metric, a novel noniterative approximation is proposed and applied to various case studies. The accuracy of the proposed approximation is evaluated in a comparative study by contrasting the resulting estimates to conventionally-computed ELCC values and the wind plant’s capacity factor. The non-iterative method is shown to yield accurate ELCC estimates with relative errors averaging around 2%. Case study findings also suggest the importance of period-specific ELCC calculations to better evaluate the variable capacity contribution of wind plants. Even when considering a well-planned system in which wind generation has been appropriately integrated in the adequacy assessment, wind plants do create significant challenges in maintaining generation adequacy on an operational level. To address these challenges, a novel operational reliability assessment tool is proposed to quantitatively evaluate the system’s operational generation adequacy given potential generator forced outages, load and wind power forecasts, and forecasting deviations. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/6862
Date03 February 2010
CreatorsD'Annunzio, Claudine
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
Formatelectronic
RightsCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.

Page generated in 0.0023 seconds