The massive evolved star. Carinae is the most luminous star in the Milky Way and has the highest steady wind mass-loss rate of any known star. Radiative transfer models of the spectrum by Hillier et al. predict that Ha is mostly emitted in regions of the wind at radii of 6-60 au from the star (2.5-25 mas at 2.35 kpc). We present diffraction-limited images (FWHM similar to 25 mas) with Magellan adaptive optics in two epochs, showing that. Carinae consistently appears similar to 2.5-3 mas wider in Ha emission compared to the adjacent 643 nm continuum. This implies that the H alpha line-forming region may have a characteristic emitting radius of 12 mas or similar to 30 au, in very good agreement with the Hillier stellar-wind model. This provides direct confirmation that the physical wind parameters of that model are roughly correct, including the mass-loss rate of M= 10(-3)M(circle dot) yr(-1), plus the clumping factor, and the terminal velocity. Comparison of the Ha images (ellipticity and PA) to the continuum images reveals no significant asymmetries at H alpha. Hence, any asymmetry induced by a companion or by the primary's rotation do not strongly influence the global H alpha emission in the outer wind.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/624482 |
Date | 17 May 2017 |
Creators | Wu, Ya-Lin, Smith, Nathan, Close, Laird M., Males, Jared R., Morzinski, Katie M. |
Contributors | Univ Arizona, Steward Observ |
Publisher | IOP PUBLISHING LTD |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | Article |
Rights | © 2017. The American Astronomical Society. All rights reserved. |
Relation | http://stacks.iop.org/2041-8205/841/i=1/a=L7?key=crossref.8a499dbd94720eff65567616026442c8 |
Page generated in 0.0099 seconds