Localization and coverage are two important and closely related problems in wireless ad hoc networks. Localization aims to determine the physical locations of devices in a network, while coverage determines if a region of interest is sufficiently monitored by devices. Localization systems require a high degree of coverage for correct functioning, while coverage schemes typically require accurate location information. This thesis investigates the relationship between localization and coverage such that new schemes can be devised which integrate approaches found in each of these well studied problems. This work begins with a thorough review of the current literature on the subjects of localization and coverage. The localization scheduling problem is then introduced with the goal to allow as many devices as possible to enter deep sleep states to conserve energy and reduce message overhead, while maintaining sufficient network coverage for high localization accuracy. Initially this sufficient coverage level for localization is simply a minimum connectivity condition. An analytical method is then proposed to estimate the amount of localization error within a certain probability based on the theoretical lower bounds of location estimation. Error estimates can then be integrated into location dependent schemes to improve on their robustness to localization error. Location error estimation is then used by an improved scheduling scheme to determine the minimum number of reference devices required for accurate localization. Finally, an optimal coverage preserving sleep scheduling scheme is proposed which is robust to localization error, a condition which is ignored by most existing solutions. Simulation results show that with localization scheduling network lifetimes can be increased by several times and message overhead is reduced while maintaining negligible differences in localization error. Furthermore, results show that the proposed coverage preserving sleep scheduling scheme results in fewer active devices and coverage holes under the presence of localization error.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OOU-OLD./20131 |
Date | 04 August 2011 |
Creators | Gribben, Jeremy |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Thèse / Thesis |
Page generated in 0.0019 seconds