Return to search

Finite Element-Boundary Integral Method And Its Application To Implantable Antenna Design For Wireless Data Telemetry

A non-stationary Krylov subspace based iterative solver for the three dimensional finite element-boundary integral (FE-BI) method for implantable antennas is presented. The present method numerically solves the frequency domain Maxwell?s equations in the variational form to formulate the finite element solution using hexahedral discretization elements in conjunction with the appropriate boundary integral equations. Four different solvers are used to investigate the convergence behavior of the FE-BI technique on the design of the antennas. The scheme is then applied to two miniaturized planar inverted-F antennas (PIFA): a serpentine and a spiral. The antennas are designed for the Medical Implant Communication Service (MICS) band (402-405 MHz). Validations and comparisons are done using High Frequency Electromagnetic Simulation (HFSS) software. Return loss, gain, near fields, and far fields are presented for the serpentine and spiral antenna.

Identiferoai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-3291
Date05 August 2006
CreatorsPvillalta, Jose S
PublisherScholars Junction
Source SetsMississippi State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations

Page generated in 0.0134 seconds