Return to search

Wireless power transfer: a reconfigurable phased array with novel feeding architecture

Indiana University-Purdue University Indianapolis (IUPUI) / This thesis proposes a reconfigurable phased array of antennas for wireless power transfer.
The array finds use in many applications, from drone destruction (for defense) to wireless
charging of robots and mobile devices. It utilizes a novel feeding architecture to greatly
reduce the number of high cost elements (such as amplifiers and phase shifters) as well as
the quantity of unused resources in the system.
Upon the instruction of the CPU, the array can separate into any number of subarrays,
each of which transmits power to a single receiver, steering its beam as the receiver changes
location. Currently dormant elements in the array can be used to provide position information
about the receivers, either via Radar, or by listening for beacons pulses from the
receiver.
All of this is made possible, with only 4 amplifiers and 3 phase shifters, by the proposed
4-Bus Method. The source signal is divided into four buses, which are respectively phase
shifted by 270 degrees, 180 degrees, 90 degrees, and 0 degrees (no shifter required) and
then amplified. The CPU calculates, based on the number and positions of the receivers
/ targets, what the amplitude and phase excitation must be at each element. Any phase
and amplitude which could be required can be achieved by simply adding together appropriate
quantities of the correct two buses. In order to achieve this, the key piece is the
variable power divider. These differ from Wilkinson dividers in that the dividing ratio can
be changed via an applied DC voltage. Therefore, at each junction, by properly diverting
the power levels on each phase bus to their proper location, complete delocalization of both
amplifiers and phase shifters can be achieved.

A method has also been developed which helps overcome the limitations of each variable
power divider. That is, in certain instances, it may be desirable to pass all the power
to a single output port or the other, which is not a possibility inherently possible with the
device. With the use of a unique combination of RF switches, the nodes achieve much
enhanced flexibility.
Finally, an intensive study is carried out, in an attempt to yield greater understanding,
as well as quick, useful approximations, of the behaviors of both rectangular and hexagonal arrays of various sizes and beam steering angles for wireless power.

Identiferoai:union.ndltd.org:IUPUI/oai:scholarworks.iupui.edu:1805/15932
Date13 April 2018
CreatorsSzazynski, Mitchel H.
ContributorsSchubert, Peter
Source SetsIndiana University-Purdue University Indianapolis
Languageen_US
Detected LanguageEnglish
TypeThesis
RightsAttribution-NonCommercial-NoDerivs 3.0 United States, http://creativecommons.org/licenses/by-nc-nd/3.0/us/

Page generated in 0.0025 seconds