Return to search

Joint synchronization of clock phase offset, skew and drift in reference broadcast synchronization (RBS) protocol

Time-synchronization in wireless ad-hoc sensor networks is a crucial piece of
infrastructure. Thus, it is a fundamental design problem to have a good clock syn-
chronization amongst the nodes of wireless ad-hoc sensor networks. Motivated by this
fact, in this thesis, the joint maximum likelihood (JML) estimator for relative clock
phase offset and skew under the exponential noise model for the reference broadcast
synchronization protocol is formulated and found via a direct algorithm. The Gibbs
Sampler is also proposed for joint estimation of relative clock phase offset and skew,
and shown to provide superior performance compared to the JML-estimator. Lower
and upper bounds for the mean-square errors (MSE) of the JML-estimator and the
Gibbs Sampler are introduced in terms of the MSE of the uniform minimum variance
unbiased estimator and the conventional best linear unbiased estimator, respectively.
The suitability of the Gibbs Sampler for estimating additional unknown parameters
is shown by applying it to the problem in which synchronization of clock drift is also
needed.

Identiferoai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/ETD-TAMU-1781
Date02 June 2009
CreatorsSari, Ilkay
ContributorsSerpedin, Erchin
Source SetsTexas A and M University
Languageen_US
Detected LanguageEnglish
TypeBook, Thesis, Electronic Thesis, text
Formatelectronic, application/pdf, born digital

Page generated in 0.0022 seconds