Return to search

Review of geometric quantization and WKB method / Revisão da quantização geométrica e método WKB

Submitted by Jose Luis Castañeda Terrones (joseluiscastanedat@gmail.com) on 2018-09-26T18:09:17Z
No. of bitstreams: 1
Tese Jose Castaneda Final.pdf: 575058 bytes, checksum: 286cdeb9575d9c271e1d873096c5ad93 (MD5) / Approved for entry into archive by Hellen Sayuri Sato null (hellen@ift.unesp.br) on 2018-10-09T14:26:09Z (GMT) No. of bitstreams: 1
castanedaterrones_js_me_ift.pdf: 18481 bytes, checksum: e7b453cf971ef08437a1e5e5f83e4380 (MD5) / Made available in DSpace on 2018-10-09T14:26:09Z (GMT). No. of bitstreams: 1
castanedaterrones_js_me_ift.pdf: 18481 bytes, checksum: e7b453cf971ef08437a1e5e5f83e4380 (MD5)
Previous issue date: 2018-08-01 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / A quantização geométrica é um procedimento para construir uma teoria quântica a partir de elementos geométricos de um sistema clássico considerado como uma variedade simplética. Ele fornece uma abordagem matemática para uma teoria quântica com uma ampla gama de aplicações que vão desde sistemas com partículas até teorias de campo quântico, para as quais a variedade simplética é o espaço cotangente do espaço de campos (elementos do espaço cotangente são variações infinitesimais). Por outro lado, o método WKB fornece uma maneira de construir uma solução aproximada para a equação de Schrödinger na mecânica quântica a partir de elementos geométricos no espaço de fase de soluções de um sistema clássico. Estas notas são uma revisão de alguns artigos sobre essas duas abordagens da mecânica quântica. / Geometric quantization is a procedure to construct a quantum theory from geometric elements of a classical system regarded as a symplectic manifold. It provides a mathematical approach to a quantum theory with a wide range of applications that go from systems with particles to quantum field theories, for which the symplectic manifold is the cotangent space of the space of fields (elements of the cotangent space are infinitesimal variations). On the other side, WKB method provides a way to construct an approximate solution to the Schrödinger equation in quantum mechanics from geometric elements on the phase space of solutions of a classical system. These notes are a review of some papers on those two approaches to quantum mechanics.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.unesp.br:11449/157267
Date01 August 2018
CreatorsCastañeda Terrones, Jose Luis
ContributorsUniversidade Estadual Paulista (UNESP), Mikhailov, Andrei [UNESP]
PublisherUniversidade Estadual Paulista (UNESP)
Source SetsIBICT Brazilian ETDs
LanguageEnglish
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Repositório Institucional da UNESP, instname:Universidade Estadual Paulista, instacron:UNESP
Rightsinfo:eu-repo/semantics/openAccess
Relation-1, -1

Page generated in 0.0057 seconds