Return to search

High-Resolution X-ray Spectroscopy reveals the Special Nature of the Wolf-Rayet Star Winds.

We present the first high-resolution X-ray spectrum of a putatively single Wolf–Rayet (WR) star. 400 ks observations of WR 6 by the XMM-Newton telescope resulted in a superb quality high-resolution X-ray spectrum. Spectral analysis reveals that the X-rays originate far out in the stellar wind, more than 30 stellar radii from the photosphere, and thus outside the wind acceleration zone where the line-driving instability (LDI) could create shocks. The X-ray emitting plasma reaches temperatures up to 50 MK and is embedded within the unshocked, “cool” stellar wind as revealed by characteristic spectral signatures. We detect a fluorescent Fe line at ≈6.4 keV. The presence of fluorescence is consistent with a two-component medium, where the cool wind is permeated with the hot X-ray emitting plasma. The wind must have a very porous structure to allow the observed amount of X-rays to escape. We find that neither the LDI nor any alternative binary scenario can explain the data. We suggest a scenario where X-rays are produced when the fast wind rams into slow “sticky clumps” that resist acceleration. Our new data show that the X-rays in single WR star are generated by some special mechanism different from the one operating in the O-star winds.

Identiferoai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-7478
Date10 March 2012
CreatorsOskinova, L., Gayley, K., Hamann, W.-R., Huenemoerder, D., Ignace, Richard, Pollock, A.
PublisherDigital Commons @ East Tennessee State University
Source SetsEast Tennessee State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceETSU Faculty Works

Page generated in 0.0017 seconds