Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), September 1998. / Includes bibliographical references (leaves 226-246). / The upper ocean crust contains a comprehensive record of the shallow geological processes active along the world's mid-ocean ridge system. This thesis examines the magnetic and seismic structure of the upper crust at two contrasting ridges-the fast spreading East Pacific Rise (EPR) and the slow spreading Mid-Atlantic Ridge (MAR)-to build a more complete understanding about the roles of volcanic emplacement, tectonic disruption and hydrothermal alteration in the near-ridge environment. A technique that inverts potential field measurements directly from an uneven observation track is developed and applied to near-bottom magnetic data from the spreading segments north of the Kane transform on the MAR. It is concluded that the central anomaly magnetization high marks the locus of focused volcanic emplacement. A cyclic faulting model is proposed to explain the oscillatory magnetization pattern associated with discrete blocks of crust being transported out of the rift valley between intensely altered fault zones. Seismic waveform and amplitude analyses of the magma sill along the EPR reveal it to be a thin (<100 m) body of partial melt. These characteristics have important implications for melt availability and transport within the cycle of eruption and replenishment. A genetic algorithm-based seismic waveform inversion technique is developed and applied to on- and near-axis multichannel data from 17'20'S on the EPR and the spreading segment south of the Oceanographer transform (MAR) to map and compare for the first time the detailed velocity structure of the upper crust at two different spreading rates. Combined with conventionally processed seismic profiles, our results show that, while final extrusive thickness is comparable at all spreading ridges (300-500 m), the style of thickening may vary. While a thin (<100 m) extrusive carapace quadruples in thickness within 1-4 km of the EPR crest, the extrusive section at the MAR achieves its final thickness within the inner valley. Both show evidence for a narrow zone of volcanic emplacement. Vigorous hydrothermalism at the EPR may produce a more rapid increase in basement velocities relative to the MAR. Rapid modification of the extrusive/dike transition at both ridges indicates that hydrothermalism is enhanced in this interval. Along-axis transport of lavas may thicken the extrusive pile at slow spreading segment ends, strengthening the magnetic highs generated by lava chemistry. / by Stefan Anthony Hussenoeder. / Ph.D.
Identifer | oai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/55336 |
Date | January 1998 |
Creators | Hussenoeder, Stefan Anthony |
Contributors | Maurice A. Tivey., Woods Hole Oceanographic Institution., Joint Program in Oceanography/Applied Ocean Science and Engineering., Massachusetts Institute of Technology. Dept. of Earth, Atmospheric, and Planetary Sciences., Woods Hole Oceanographic Institution. |
Publisher | Massachusetts Institute of Technology |
Source Sets | M.I.T. Theses and Dissertation |
Language | English |
Detected Language | English |
Type | Thesis |
Format | 246 leaves, application/pdf |
Rights | M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582 |
Page generated in 0.0017 seconds