Return to search

Klasifikátor pro sémantické vzory užívání anglických sloves / Classifier for semantic patterns of English verbs

The goal of the diploma thesis is to design, implement and evaluate classifiers for automatic classification of semantic patterns of English verbs according to a pattern lexicon that draws on the Corpus Pattern Analysis. We use a pilot collection of 30 sample English verbs as training and test data sets. We employ standard methods of machine learning. In our experiments we use decision trees, k-nearest neighbourghs (kNN), support vector machines (SVM) and Adaboost algorithms. Among other things we concentrate on feature design and selection. We experiment with both morpho-syntactic and semantic features. Our results show that the morpho-syntactic features are the most important for statistically-driven semantic disambiguation. Nevertheless, for some verbs the use of semantic features plays an important role.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:304092
Date January 2012
CreatorsKríž, Vincent
ContributorsHolub, Martin, Bojar, Ondřej
Source SetsCzech ETDs
LanguageSlovak
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0022 seconds