Return to search

Practical Real-Time with Look-Ahead Scheduling / Praktikable Echtzeit durch vorausschauende Einplanung

In my dissertation, I present ATLAS — the Auto-Training Look-Ahead Scheduler. ATLAS improves service to applications with regard to two non-functional properties: timeliness and overload detection. Timeliness is an important requirement to ensure user interface responsiveness and the smoothness of multimedia operations. Overload can occur when applications ask for more computation time than the machine can offer. Interactive systems have to handle overload situations dynamically at runtime. ATLAS provides timely service to applications, accessible through an easy-to-use interface. Deadlines specify timing requirements, workload metrics describe jobs. ATLAS employs machine learning to predict job execution times. Deadline misses are detected before they occur, so applications can react early.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-125346
Date21 October 2013
CreatorsRoitzsch, Michael
ContributorsTechnische Universität Dresden, Fakultät Informatik, Prof. Dr. rer. nat. Hermann Härtig, Prof. Dr. rer. nat. Hermann Härtig, Prof. Dr. Gerhard Fohler
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0037 seconds