Return to search

Aspects on wettability and surface composition of modified wood

<p>Wood is often combined with other materials such as thermoplastics, adhesives and coatings. In general, combinations of wood and polymers especially in outdoor exposure have poor long-term durability. This behaviour can be related to an insufficient wood-polymer adhesion due to the low intrinsic compatibility between the wood substance and the polymers used. Another source for woodpolymer de-bonding is the high hygroscopicity of wood and great difference in hygro-thermal properties between the components.</p><p> The basic conceptual idea related to this work is to reduce the hygrosensitivity of wood by applying different wood modification methods, in particular, acetylation, furfurylation and heat treatment. The effects of such chemical modifications of wood, also accompanied with ageing effects, on its adhesion properties with commonly used synthetic polymers are, however, not well understood. In this context, the over-all purpose of this thesis is to achieve a better understanding of wood-polymer adhesion and interfacial forces which also may guide us to tailor the interaction between modified wood and e.g. thermoplastics and adhesives. The main focus of this thesis is therefore to apply contact angle analysis based on the Chang-Qin-Chen (CQC) Lewis acid-base model in order to estimate the work of adhesion (<i>W</i><i>a</i>) between the wood, modified wood and certain polymers. Contact angle measurements on wood samples were performed based on the Wilhelm plate principle. Related to this, an effort was also made to characterize the studied modified wood surfaces according to morphology and chemical composition. The methods that have been used are low vacuum scanning electron microscopy (LV-SEM), X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). </p><p>Results show that so-called interaction parameters can be successfully estimated for prediction of <i>W</i><i>a</i> between wood and polymers using the applied CQC model. Furthermore, such wetting analysis was successfully related to spectroscopic findings of the chemical composition of the wood samples surface. Ageing effects, i.e. the time after preparation of the wood surface, play a central role for the surface characteristics. In most cases, ageing resulted in a significant decrease of <i>W</i><i>a</i> between wood and water and a moderate decrease between wood and thermoplastics. The surface characteristics of acetylated wood were, however, more stable over time compared to unmodified, furfurylated and heat treated wood. The predicted <i>W</i><i>a</i><sub> </sub>with the adhesives for heat treated and acetylated wood was increased due to ageing. Future work is planned to involve studies in order to relate such predicted adhesion properties with the actual performance of various wood-polymer systems.</p>

Identiferoai:union.ndltd.org:UPSALLA/oai:DiVA.org:kth-4735
Date January 2008
CreatorsBryne, Lars-Elof
PublisherKTH, Civil and Architectural Engineering, Stockholm : Byggvetenskap
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, text
RelationTrita-BYMA, 0349-5752 ; 2008:1

Page generated in 0.0031 seconds