Return to search

Workfunction tuning of AZO Films Through Surface Modification for Anode Application in OLEDs.

Widespread use of organic light emitting diodes (OLEDs) in solid state lighting and display technologies require efficiency and lifetime improvements, as well as cost reductions, inclusive of the transparent conducting oxide (TCO). Indium tin oxide (ITO) is the standard TCO anode in OLEDs, but indium is expensive and the Earth's reserve of this element is limited. Zinc oxide (ZnO) and its variants such as aluminum-doped ZnO (AZO) exhibit comparable electrical conductivity and transmissivity to ITO, and are of interest for TCO applications. However, the workfunction of ZnO and AZO is smaller compared to ITO. The smaller workfunction of AZO results in a higher hole injection barrier at the anode/organic interface, and methods of tuning its workfunction are required.
This dissertation tested the hypothesis that workfunction tuning of AZO films could be achieved by surface modification with electronegative oxygen and fluorine plasmas, or, via use of nanoscale transition metal oxide layers (MoOx, VOx and WOx). Extensive UPS, XPS and optical spectroscopy studies indicate that O2 and CFx plasma treatment results in an electronegative surface, surface charge redistribution, and a surface dipole moment which reinforces the original surface dipole leading to workfunction increases. Donor-like gap states associated with partially occupied d-bands due to non-stoichiometry determine the effective increased workfunction of the AZO/transition-metal oxide stacks. Reduced hole injection barriers were engineered by ensuring that the surface ad-layers were sufficiently thin to facilitate Fowler-Nordheim tunneling. Improved band alignments resulted in improved hole injection from the surface modified AZO anodes, as demonstrated by I-V characterization of hole only structures. Energy band alignments are proposed based on the aforementioned spectroscopies.
Simple bilayer OLEDs employing the surface modified AZO anodes were fabricated and characterized to compare their performance with standard ITO. Anodes consisting of AZO with MoOx or VOx interfacial layers exhibited 50% and 71% improvement in power efficiency (PE) and external quantum efficiency (EQE), respectively, compared to ITO at a working voltage of 9 V. The efficiencies of dipole reinforced AZO (O2/CFx plasma treated) anodes were comparable to ITO. The improved performance of the surface modified AZO anodes compared to as-deposited AZO is ascribed to improved hole injection, improved charge balance, and improved radiative recombination kinetics. The results suggest that surface modified AZO anodes are a promising alternative to ITO, given the lower cost and Earth abundance of Al and Zn.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc862818
Date08 1900
CreatorsJha, Jitendra
ContributorsShepherd, Nigel D, Du, Jincheng, Scharf, Thomas, Xia, Zhenhai, D'Souza, Francis
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, Jha, Jitendra, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.0025 seconds