Return to search

Low intensity pulsed ultrasound accelerates bone-tendon junction healing. / CUHK electronic theses & dissertations collection

Establishment of animal model for studying treatment efficacy of low-intensity pulsed ultrasound stimulations for accelerating bone-tendon repair. Standard partial patellectomy was conducted in the 18-week old rabbits that were then divided into the LIPUS treatment and control groups. The animals were followed for 2, 4, 8, and 16 weeks for various tissue analyses. LIPUS was applied to the experimental animals from postoperative day 3 to 16 weeks. We demonstrated that the healing process of PPT junction was initiated through endochondral ossification. The results showed that the size and length of newly formed bone, and its bone mineral content (BMC), but not its bone mineral density (BMD) were correlated with the failure load, ultimate strength and energy at failure. Using radiographic, biomechanical, histomorphologic and biomechanical methods, it was found that LIPUS had significant accelerating effect on PPT junction repair. We validated our study hypothesis in that LIPUS enhances bone-tendon junction healing by stimulating angiogenesis, chondrogenesis and osteogenesis. / Establishment of in vitro model for mechanism study on effects of low-intensity pulsed ultrasound stimulations. An in vitro model of osteoblast-like cell line (SaOS-2 cells) was studied using cDNA microarray to explore the molecular mechanism mediated by LIPUS. This microarray analysis revealed a total of 165 genes that were regulated at 4 and 24 hours by LIPUS treatment in osteoblastic-like cells. These genes belonged to more than ten protein families based on their function and were involved in some signal transduction pathways. This study has validated the hypothesis that LIPUS can regulate a number of critical genes transient expressions in osteoblast cell line Saos-2. / Keywords. partial patellectomy model; bone-tendon junction repair; low intensity pulsed ultrasound stimulations (LIPUS); gene expression; complementary DNA microarray; rabbit. / This study explored the intact morphology, regular healing and the augmented healing under the effects of low intensity pulsed ultrasound stimulations (LIPUS) on the patella-patella tendon (PPT) junction in a rabbit partial patellectomy model. To probe its possible mechanism, the key genes involved in regulating osteogenesis mediated by LIPUS were identified using the state-of-the-art methods---complementary DNA microarray. / Lu Hongbin. / "June 2006." / Advisers: Ling Qin; Kwok Sui Leung. / Source: Dissertation Abstracts International, Volume: 68-03, Section: B, page: 1548. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (p. 259-288). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_343867
Date January 2006
ContributorsLu, Hongbin, Chinese University of Hong Kong Graduate School. Division of Orthopaedics & Traumatology.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, theses
Formatelectronic resource, microform, microfiche, 1 online resource (xxxv, 288 p. : ill.)
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0026 seconds