Indiana University-Purdue University Indianapolis (IUPUI) / Hydrocephalus is a debilitating disease characterized by an increase in cerebrospinal fluid (CSF) in the brain, leading to increases in pressure that can ultimately result in death. Current treatments for hydrocephalus include only invasive brain surgery. Therefore, the need for a pharmaceutical therapy is great. In order to develop a suitable treatment, we first must be able to study the disease and the mechanisms by which it develops. By characterizing appropriate in vivo and in vitro models, we are better able to study this disease. In this thesis, the Wpk rat model and the PCP-R cell line are described as such appropriate models. In addition to suitable models, we also require a target for drug treatment. Transient Receptor Potential Vanilloid 4 (TRPV4) is a non-selective cation ion channel present in the main CSF-producing organ in the brain, the choroid plexus (CP). Preliminary data suggest this channel plays a role in the development of hydrocephalus. In the following work, some of the mechanisms by which TRPV4 functions in the brain are also described, including through calcium-sensitive potassium channels and inflammation. From this research, we are able to achieve a better understanding of the function of TRPV4 and how it can affect the development and progression of hydrocephalus.
Identifer | oai:union.ndltd.org:IUPUI/oai:scholarworks.iupui.edu:1805/18920 |
Date | 05 1900 |
Creators | Simpson, Stafanie J. |
Contributors | Blazer-Yost, Bonnie, Belecky-Adams, Teri, Berbari, Nicolas, Goodlett, Charles |
Source Sets | Indiana University-Purdue University Indianapolis |
Language | en_US |
Detected Language | English |
Type | Thesis |
Rights | Attribution 3.0 United States, http://creativecommons.org/licenses/by/3.0/us/ |
Page generated in 0.0019 seconds