In the Asian and other monsoon regions of the world most of the severe weather observed is local or mesoscale in nature. Forecasting convective storms or mesoscale systems in the monsoon regions, especially in the tropics, has always been a challenging task to operational meteorologists.
Maldives Islands, being situated in the tropical Indian Ocean, are affected by monsoon depressions and tropical cyclones. Thunderstorms and the passage of squall lines are well known sources of heavy rainfall. However, due to the lack of professional people and necessary equipment the weather systems around these islands are seldom studied. Therefore the aim of this thesis is to investigate whether the small islands can create sufficient perturbations in the mesoscale environment to result in the development of convective systems. In this regard, two numerical models, Weather Research and Forecasting model (WRF version 2.2.1) and Regional Atmospheric Modelling System (RAMS version 6.0) were used in this study.
Two experiments were performed using the WRF model. In the first experiment, a case study was investigated where the selected day experienced heavy rainfall and thunderstorms. In the second experiment, the same case study was used but with the topographical and surface properties removed in order to investigate the influence of the island in modifying the mesoscale environment. All the experiments were initialized using the re-analysis data from NECP. WRF was able to predict the large scale synoptic features with reasonable accuracy when compared to the observations. Development of the boundary layer and the downstream advection of the temperature anomaly generated by the island were well represented. However, the magnitude of the effects was shown to be weak, probably due to the influence of large scale synoptic features. Even though the model was able to predict the large scale features and some of the mesoscale features, it did not predict any storm development and underestimated the precipitation. Therefore, it was decided to idealize the storm development using the RAMS model.
RAMS model was used in a two-dimensional framework. The model was initialized horizontally homogenous using a single sounding and six simulations were performed. The simulation results clearly depicted that the small island can generate its own circulation and influence the mesoscale environment. The daytime heating of the island and the downstream advection of the temperature anomaly in a moist unstable atmosphere could trigger a thunderstorm later in the day. The storm becomes mature approximately 40-80 km offshore. This also suggests that triggering of a storm on one side of an atoll could influence the islands on the downstream side. Sensitivity of storm development to the thermodynamics showed that even with an unstable atmosphere, enough moisture in the lower and mid-troposphere is needed to trigger the storm. Sensitivity to the change of SST showed that convective development was suppressed with a drop of 1 oC. However, this needs further investigation. Assessment of sensitivity to the size of the island showed that the time of triggering of the storm was later and the scale of influence was smaller with a smaller island.
Identifer | oai:union.ndltd.org:canterbury.ac.nz/oai:ir.canterbury.ac.nz:10092/3026 |
Date | January 2009 |
Creators | Shareef, Ali |
Publisher | University of Canterbury. Geography |
Source Sets | University of Canterbury |
Language | English |
Detected Language | English |
Type | Electronic thesis or dissertation, Text |
Rights | Copyright Ali Shareef, http://library.canterbury.ac.nz/thesis/etheses_copyright.shtml |
Relation | NZCU |
Page generated in 0.0022 seconds