Return to search

Using a Structuring Approach to Assess the Mechanical Properties of Cellulose Nanocrystal-Based Thin Films / Mechanical Properties Of Cellulose Nanocrystal Thin Films

The goal of this work was to quantify the mechanical properties of cellulose nanocrystal (CNC)-based thin films using a polystyrene (PS) structuring approach. This structuring approach was used to biaxially wrinkle CNC-polymer and all-CNC films, in order to assess how changes in the film fabrication process affected the elastic modulus of these films. All films were prepared on pre-stressed PS substrates and structured by heating them above the glass transition temperature of PS, which caused the substrates to shrink and the films to wrinkle biaxially. CNC-polymer films were prepared using the layer-by-layer approach, where three parameters were modified to obtain films of varying compositions: 1) type of polymer (xyloglucan, XG, or polyethyleneimine, PEI), 2) polymer concentration (0.1 wt% or 1 wt%), and 3) film thickness (i.e., number of deposited bilayers). After these films were structured, their elastic moduli were calculated to be 70 ± 2 GPa for CNC-XG0.1, 72 ± 2 GPa for CNC-PEI0.1, and 32.2 ± 0.8 GPa for CNC-PEI1.0 films, indicating that the mechanical properties of CNC-polymer films changed with film composition. This structuring method was also found to provide a humidity-independent measurement of the modulus due to the irreversible nature of the wrinkling. Next, to prepare all-CNC films, CNC suspensions were evaporated under conditions designed to control the film thickness (using 0.005 wt% – 8 wt% CNC suspensions) and CNC nanoparticle orientation (chiral nematic, isotropic, or uniaxial). Suspensions were dried slowly under vacuum, quickly by heating, or by spin-coating to form films with chiral nematic, isotropic, or uniaxial (radial) CNC orientations, respectively. Following structuring, these wrinkled films showed unique morphologies that changed with nanoparticle orientation, suggesting that their mechanical properties are dependent on the CNC orientation within the films. The work presented in this thesis implies that the mechanical properties of films fabricated from hygroscopic bio-based nanomaterials can be assessed in a humidity-independent way by using the structuring method presented. Quantifying the mechanical properties of these films is critical to assess the potential applications of CNCs, where CNC-based materials may be used in developing paper-based electronics, extracellular matrix mimics, and plant cell wall mimics. / Thesis / Master of Science (MSc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/22335
Date January 2017
CreatorsGill, Urooj
ContributorsMoran-Mirabal, Jose M., Cranston, Emily D., Chemistry and Chemical Biology
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0021 seconds