Return to search

SYNTHESIS, SINTERING, AND ELECTRONIC CONDUCTIVITY STUDIES OF MEDIUM- AND HIGH-ENTROPY PEROVSKITE OXIDES

The application of the entropy concept to stabilize oxide systems opens the possibility of discovering new materials with unique structural and functional properties. High-entropy alloys and oxides, which are based on the entropy stabilization concept and composed of multi-principal elements, have the potential to tailor structural and functional properties to meet specific needs. The study of lanthanum-based perovskite materials that benefit from the entropy stabilization approach is a promising area of research.However, the inherent randomness of multi-principal elements presents new challenges, making it difficult to predict their behavior. To understand these difficulties, we have initiated a methodical investigation of La-based medium- and high-entropy perovskite oxides. This study focuses on the synthesis, characterization, sintering mechanism, and electrical conductivity properties of nine La1-xCax(A1/3, B1/3, C1/3)O3 medium-entropy perovskite oxide systems (A, B, and C = three combination of Cr or Co or Fe or Ni or Mn) and one La1-xCax(Cr0.2Co0.2Fe0.2Ni0.2Mn0.2)O3 high-entropy perovskite oxide system (for x = 0.1 to 0.3). This research aims to provide better understanding of: (1) synthesis process, (2) temperature of single-phase formation, (3) the impact of various combinations of multiple B-site transitional elements and Ca doping on crystal structure, and microstructure (4) sintering mechanism and (5) electrical conductivity properties.

Identiferoai:union.ndltd.org:siu.edu/oai:opensiuc.lib.siu.edu:dissertations-3105
Date01 May 2023
CreatorsGajjala, Sai Ram
PublisherOpenSIUC
Source SetsSouthern Illinois University Carbondale
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceDissertations

Page generated in 0.0016 seconds