Speciation, the formation of new species, is an essential evolutionary process that causes species diversity on the Earth. At the beginning of this process is the separation of two populations by a reproductive barrier that prevents gene flow between these populations. One of the mechanisms, which enable reproductive isolation, is hybrid sterility (HS). It is a mechanism of postzygotic isolation that is described in a number of eukaryotes. The first discovered gene of hybrid sterility in vertebrates is the mice gene Hst1, later identified as gene Prdm9. By genetic and molecular analysis the locus on the X chromosome was determined, whose interaction with Prdm9 causes sterility or reduced fitness in male hybrids. This locus contains two genetic factors: Hstx1, causing an abnormal morphology of spermatozoa, and Hstx2, causing an arrest in spermatogenesis in pachytene spermatocytes and sterility. In my thesis I focus on the effect of deletion of a candidate hybrid sterility gene Fmr1nb on the X chromosome. The analysis of males B6N.Fmr1nbmut with deletion variants of the Fmr1nb gene showed that Fmr1nb is one of the factors influencing spermatogenesis. An increase in morphologic abnormalities in spermatozoa occurred in males with Fmr1nb gene deletion. This phenotype is identical with Hstx1. The effect...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:331155 |
Date | January 2015 |
Creators | Kašíková, Lenka |
Contributors | Jansa, Petr, Rothová, Olga |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.002 seconds