Return to search

Synthesis And Characterization Of Ruthenium(0) Metal Nanoparticles As Catalyst In The Hydrolysis Of Sodium Borohydride

Sodium borohydride is stable in alkaline solution, however, it hydrolyses and generates hydrogen gas in the presence of suitable catalyst. By this way hydrogen can be generated safely for the fuel cells. All of the catalyst having been used in the hydrolysis of sodium borohydride, with one exception, are heterogeneous. The limited surface area of the heterogeneous and therefore, have limited activity because of the surface area. Thus, the use of metal nanoclusters as catalyst with large surface area is expected to provide a potential route to increase the catalytic activity.
In this dissertation we report for the first time the use of ruthenium(0) nanoparticles as catalyst in the hydrolysis of sodium borohydride. The water dispersible ruthenium(0) nanoparticles were prepared by the reduction of RuCl3.xH2O with sodium borohydride and were stabilized by three different ligands dodecanethiol, ethylenediamine and acetate. Among these three colloidal materials the acetate stabilized ruthenium(0) nanoparticles were found to have the highest catalytic activity in catalyzing the hydrolysis of sodium borohydride. The acetate stabilized ruthenium(0) nanoparticles were characterized by tranmission electron microscopy (TEM), X-ray photoelectron spectroscopy and FT-IR spectroscopy. The particle size of the acetate stabilized ruthenium(0) nanoparticles was determined to be 2.62&plusmn / 1.18 nm from the TEM analysis. The kinetic of the ruthenium(0) nanoparticles catalyzed hydrolysis of sodium borohydride was studied depending on the catalyst concentration, substrate concentration and temperature. The activation parameters of this reaction were also determined from the evaluation of the kinetic data. This catalyst provides the lowest activation energy ever found for the hydrolysis of sodium borohydride.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/3/12605966/index.pdf
Date01 April 2005
CreatorsZahmakiran, Mehmet
ContributorsOzkar, Saim
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0018 seconds