Selective electron beam melting (SEBM) is a promising powder bed Additive Manufacturing technique for near-net-shape manufacture of high-value titanium components. An extensive research program has been carried out to characterise in 3D the size, volume fraction, and spatial distribution of the pores in model samples, using X-ray computed tomography (XCT), and correlate them to the SEBM process variables. The average volume fraction of the pores (97.5 %) where fatigue cracks would initiate based on the relative stress intensity factor of all the pores. In contrast, crack growth was found to be insensitive to porosity, which was attributed to the much higher stress concentration generated by the crack in comparison to the pores. Some crack diversion was associated with the local microstructure, with prior β grain boundaries often coincident with crack diversion.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:727941 |
Date | January 2016 |
Creators | Tammas-Williams, Samuel |
Contributors | Prangnell, Philip |
Publisher | University of Manchester |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | https://www.research.manchester.ac.uk/portal/en/theses/xct-analysis-of-the-defect-distribution-and-its-effect-on-the-static-and-dynamic-mechanical-properties-in-ti6al4v-components-manufactured-by-electron-beam-additive-manufacture(cb034391-b61f-4e16-91cd-7ad3c9ec6312).html |
Page generated in 0.0022 seconds