Return to search

Mechanical Design of Selected Natural Ceramic Cellular Solids

While the structure and mechanical properties of natural cellular solids such as wood and trabecular bone have been extensively studied in the past, the structural design and underlying deformation mechanisms of natural cellular solids with very high mineral contents (> 90 wt%), which we term as natural ceramic cellular solids, are largely unexplored. Many of these natural ceramic cellular solids, despite their inherent brittle constituent biominerals (e.g., calcite or aragonite), exhibit remarkable mechanical properties, such as high stiffness and damage tolerance. In this thesis, by carefully selecting three biomineralized skeletal models with distinctly different cellular morphologies, including the honeycomb-like structure in cuttlefish bone (or cuttlebone), the stochastic open-cell structure in sea urchin spines, and the periodic open-cell structure in starfish ossicles, I systematically investigate the mechanical design strategies of these natural ceramic cellular solids. The three model systems are cuttlefish Sepia officinalis, sea urchin Heterocentrotus mammillatus, and starfish Protoreaster nodosus, respectively. By investigating the relationship between their mechanical properties and structural characteristics, this thesis reveals some novel structural design strategies for developing lightweight, tough, strong, and stiff ceramic cellular solids.
The internal skeleton of S. officinalis, also known as cuttlebone, has a porosity of 93 vol% (constituent material: 90 wt% aragonite), which is a multichambered structure consisting of horizontal septa and thin vertical walls with corrugated cross-sectional profiles. Through systematic ex-situ and synchrotron-based in-situ mechanical measurements and collaborative computational modeling, we reveal that the vertical walls in the cuttlebone exhibit an optimal
waviness gradient, which leads to compression-dominant deformation and asymmetric wall fracture, accomplishing both high stiffness (8.4 MN∙m/kg) and high energy absorption (4.4 kJ/kg). Moreover, the distribution of walls reduces stress concentrations within the horizontal septa, facilitating a larger chamber crushing stress and more significant densification.
For the stochastic open-cell foam-like structure, also known as stereom (porosity: 60-80 vol%, constituent material: 99 wt% calcite) in H. mammillatus, we first developed a computer vision-based algorithm that allows for quantitative analysis of the cellular network of these structures at both local individual branch and node level as well as the global network level. This open-source algorithm could be used for analyzing both biological and engineering open-cell foams. I further show that the smooth, highly curved branch morphology with near-constant surface curvature in stereom results in low-stress concentration, which further leads to dispersed crack formation upon loading. Combined synchrotron in-situ analysis, electron microscopic analysis, and computational modeling further reveal that the fractured branches are efficiently jammed by the small throat openings within the cellular structure. This further leads to the formation of damage bands with densely packed fracture pieces. The continuous widening of the damage bands through progressive microfracture of branches at the boundaries contributes to the observed high plateau stress during compression, thereby contributing to its high energy absorption (17.7 kJ/kg), which is comparable and even greater than many synthetic metal- and polymer-based foams.
Lastly, this thesis leads to the discovery of a unique dual-scale single-crystalline porous lattice structure (porosity: 50 vol%, constituent material: 99 wt% calcite) in the ossicles of P. nodosus. At the atomic level, the ossicle is composed of single-crystal biogenic calcite. At the lattice level, the ossicle's microstructure organizes as a diamond-triply periodic minimal surface (TPMS) structure. Moreover, the crystallographic axes at atomic and lattice levels are aligned, i.e., the c-axis of calcite is aligned with the [111] direction of the diamond-TPMS lattice. This single
crystallinity co-alignment at two levels mitigates the compliance of calcite in the c-axis direction by utilizing the stiff <111> direction of the diamond-TPMS lattice. Furthermore, 3D in-situ mechanical characterizations reveal that the presence of crystal defects such as 60° and screw dislocations at the lattice level suppresses slip-like fracture along the {111} planes of the calcitic diamond-TPMS lattice upon loading, achieving an enhanced energy absorption capability. Even though the skeleton of echinoderm is made up of single-crystal calcite, the structure fractures in a conchoidal manner rather than along the clipping plane, which can continuously fracture the fragments into small pieces and enhance energy dissipation. / Doctor of Philosophy / The application of engineering ceramic cellular solids as structural components is limited by their brittleness and flaw sensitivity. In contrast, nature has evolved ceramic cellular materials such as sea sponge, sea urchin spine, and diatom shells that are simultaneously lightweight, strong, and damage-tolerant. These properties are thought to be achieved by the structure design of the component of those materials. Learning design strategies from these natural ceramic cellular solids is significant for developing lightweight bio-inspired ceramic materials with improved mechanical performance.
In this thesis, I investigated mechanical design strategies from natural ceramic cellular solids in three model systems, i.e., cuttlebone from cuttlefish Sepia officinalis, spines from sea urchin Heterocentrotus mammillatus, ossicles from starfish Protoreaster nodosus. These three natural ceramic porous solids have high mineral content in the constituent materials (> 90 wt%) and have a highly porous structure (porosity: 50 vol%-93 vol%). These three model systems are selected to represent the analogs of three typical structure forms of synthetic cellular solids, i.e., honeycomb-like structures, stochastic and periodic open-cell structures, respectively. This thesis aims to establish a quantitative relationship between the 3D multiscale structure and deformation/toughening behavior for these selected natural ceramic cellular solids via a combination of different experimental and computational approaches.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/112644
Date24 May 2021
CreatorsYang, Ting
ContributorsMechanical Engineering, Li, Ling, Mirzaeifar, Reza, Zhu, Yunhui, Williams, Christopher Bryant
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0026 seconds