Nuclear physics tells us a lot about astrophysics, particularly the energy generation in stars. The present work is a thesis in experimental nuclear physics, reporting the results of 30S radioactive beam development for a future experiment directly measuring data to extrapolate the 30S(α,p) stellar reaction rate in Type I X-ray bursts, a phenomena where nuclear explosions occur repeatedly on the surface of accreting neutron stars. On the astrophysics side, the work details basic stellar physics and stellar reaction formalism in Chapter 1, the behaviour of compact stars in Chapter 2, and a full literature review of Type I X-ray bursts in Chapter 3. Nuclear experiments are non-trivial, and the results reported here were not accomplished by the author alone. Stable-beam experiments are technically challenging and involved, but for the case at hand, the halflife of 30S is a mere 1.178 seconds, and in order to measure reaction cross-sections, we must make a beam of
the radionuclide 30S in situ and use these rare nuclei immediately in our measurement.
Particle accelerator technology and radioactive ion production are treated in Chapter 4, and the experimental facility and nuclear measurement techniques are discussed in some detail in Chapter 5. In order to perform a successful future experiment which allows us to calculate the stellar 30S(α, p) reaction rate, calculations indicate we require a 30S beam of
~ 10^5 particles per second at ~ 32 MeV. Based on our recent beam development experiments in 2006 and 2008, it is believed that such a beam may be fabricated in 2009 according to the results presented in Chapters 6 and 7. We plan to measure the 4He(30S,p) cross-section at astrophysical energies in 2009, and some remarks on the planned (α,p) technique are also elucidated in Chapters 5, 6 and 7. / Thesis / Master of Science (MSc)
Identifer | oai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/21413 |
Date | 09 1900 |
Creators | Kahl, David Miles |
Contributors | Chen, Alan A., Physics and Astronomy |
Source Sets | McMaster University |
Language | en_US |
Detected Language | English |
Type | Thesis |
Page generated in 0.0017 seconds