Return to search

Evaluation of novel metalorganic precursors for atomic layer deposition of Nickel-based thin films

Nickel und Nickel (II) -oxid werden in großem Umfang in fortgeschrittenen elektronischen Geräten verwendet. In der Mikroelektronik-Industrie wird Nickel verwendet werden, um Nickelsilizid bilden. Die Nickelmono Silizid (NiSi) wurde als ausgezeichnetes Material für Source-Drain-Kontaktanwendungen unter 45 nm-CMOS-Technologie entwickelt. Im Vergleich zu anderen Siliziden für die Kontaktanwendungen verwendet wird NiSi wegen seines niedrigen spezifischen Widerstand, niedrigen Kontaktwiderstand, relativ niedrigen Bildungstemperatur und niedrigem Siliziumverbrauchs bevorzugt. Nickel in Nickelbasis-Akkus und ferromagnetischen Direktzugriffsspeicher (RAMs) verwendet. Nickel (II) oxid wird als Transistor-Gate-Oxid und Oxid in resistive RAM genutzt wird.

Atomic Layer Deposition (ALD) ist eine spezielle Art der Chemical Vapor Deposition (CVD), das verwendet wird, um sehr glatte sowie homogene Dünnfilme mit hervorragenden Treue auch bei hohen Seitenverhältnissen abzuscheiden. Es basiert auf selbstabschließenden sequentielle Gas-Feststoff-Reaktionen, die eine präzise Steuerung der Filmdicke auf wenige Angström lassen sich auf der Basis. Zur Herstellung der heutigen 3D-elektronische Geräte, sind Technologien wie ALD erforderlich. Trotz der Vielzahl von praktischen Anwendungen von Nickel und Nickel (II) -oxid, sind einige Nickelvorstufen zur thermischen basierend ALD erhältlich.

Darüber hinaus haben diese Vorstufen bei schlechten Filmeigenschaften führte und die Prozesseigenschaften wurden ebenfalls begrenzt. Daher in dieser Masterarbeit mussten die Eigenschaften verschiedener neuartiger Nickelvorstufen zu bewerten. Alle neuen Vorstufen heteroleptische (verschiedene Arten von Liganden) und Komplexe wurden vom Hersteller speziell zur thermischen basierend ALD aus reinem Nickel mit H 2 als ein Co-Reaktionsmittel gestaltet. Um die neuartige Vorläufer zu untersuchen, wurde eine neue Methode entwickelt, um kleine Mengen in einer sehr zeitsparend (bis zu 2 g) von Ausgangsstoffen zu testen. Diese Methodologie beinhaltet: TGA / DTA-Kurve analysiert der Vorstufen, thermische Stabilitätstests in dem die Vorläufer (<0,1 g) wurden bei erhöhter Temperatur in einer abgedichteten Umgebung für mehrere Stunden wurde die Abscheidung Experimenten und Film Charakterisierungen erhitzt. Die Abscheidungen wurden mit Hilfe der in situ Quarzmikrowaage überwacht, während die anwendungsbezogenen Filmeigenschaften, wie chemische Zusammensetzung, physikalische Phase, Dicke, Dichte, Härte und Schichtwiderstand wurden mit Hilfe von ex situ Messverfahren untersucht.

Vor der Evaluierung neuartiger Nickelvorstufen ein Benchmark ALD-Prozess war vom Referenznickelvorläufer (Ni (AMD)) und Luft als Reaktionspartner entwickelt. Das Hauptziel der Entwicklung und Optimierung von solchen Benchmark-ALD-Prozess war es, Standard-Prozessparameter wie zweite Reaktionspartner Belichtungszeiten, Argonspülung Zeiten, gesamtprozessdruck, beginnend Abscheidungstemperatur und Gasströme zu extrahieren. Diese Standard-Prozessparameter mussten verwendet, um die Prozessentwicklung Aufgabe (das spart Vorläufer Verbrauch) zu verkürzen und die Sublimationstemperatur Optimierung für jede neuartige Vorstufe werden. Die ALD Verhalten wurde in Bezug auf die Wachstumsrate durch Variation des Nickelvorläuferbelichtungszeit, Vorläufer Temperatur und Niederschlagstemperatur überprüft.:Lists of Abbreviations and Symbols VIII
Lists of Figures and Tables XIV
1 Introduction 1
I Theoretical Part 3
2 Nickel and Nickel Oxides 4
2.1 Introduction and Existence 5
2.2 Material properties of Nickel and Nickel Oxide 5
2.3 Application in electronic industry 5
3 Atomic Layer Deposition 7
3.1 History 8
3.2 Definition 8
3.3 Features of thermal-ALD 8
3.3.1 ALD growth mechanism – an ideal view 8
3.3.2 ALD growth behaviour 10
3.3.3 Growth mode 11
3.3.4 ALD temperature window 11
3.4 Benefits and limitations 12
3.5 Precursor properties for thermal-ALD 13
3.6 ALD & CVD of Nickel – A literature survey 13
4 Metrology 17
4.1 Thermal analysis of precursors 18
4.2 Film and growth characterization 21
4.2.1 Quartz Crystal Microbalance 21
4.2.2 Spectroscopic Ellipsometry 24
4.2.3 X-Ray Photoelectron Spectroscopy 28
4.2.4 Scanning Electron Microscopy 29
4.2.5 X-Ray Reflectometry and X-Ray Diffraction 29
4.2.6 Four Point Probe Technique 20
5 Rapid Thermal Processing 32
5.1 Introduction 33
5.2 Basics of RTP 33
5.3 Nickel Silicides-A literature survey 33
II Experimental Part 36
6 Methodologies 37
6.1 Experimental setup 38
6.2 ALD process 41
6.2.1 ALD process types and substrate setups 41
6.2.2 Process parameters 41
6.3 Experimental procedure 42
6.3.1 Tool preparation 42
6.3.2 Thermal analysis and ALD experiments from nickel precursors 43
6.3.3 Data acquisition and evaluation 44
6.3.4 Characterization of film properties 46
7 Results and discussion 48
7.1 Introduction 49
7.2 QCM verification with Aluminum Oxide ALD process 49
7.3 ALD process from the reference precursor 50
7.3.1 Introduction 50
7.3.2 TG analysis for Ni(amd) precursor 51
7.3.3 Thermal stability test for Ni(amd) 51
7.3.4 ALD process optimization 52
7.3.5 Film properties 54
7.4 Evaluating the novel Nickel precursors 55
7.4.1 Screening tests for precursor P1 55
7.4.2 Screening tests for precursor P2 62
7.4.3 Screening tests for precursor P3 66
7.4.4 Screening tests for precursor P4 70
7.4.5 Screening tests for precursor P5 72
7.5 Comparison of all nickel precursors used in this work 74
8 Conclusions and outlook 77
References 83
III Appendix 101
A Deposition temperature control & Ellipsometry model 102
B Gas flow plan 105 / Nickel and nickel(II) oxide are widely used in advanced electronic devices . In microelectronic industry, nickel is used to form nickel silicide. The nickel mono-silicide (NiSi) has emerged as an excellent material of choice for source-drain contact applications below 45 nm node CMOS technology. As compared to other silicides used for the contact applications, NiSi is preferred because of its low resistivity, low contact resistance, relatively low formation temperature and low silicon consumption. Nickel is used in nickel-based rechargeable batteries and ferromagnetic random access memories (RAMs). Nickel(II) oxide is utilized as transistor gate-oxide and oxide in resistive RAMs.

Atomic Layer Deposition (ALD) is a special type of Chemical Vapor Deposition (CVD) technique, that is used to deposit very smooth as well as homogeneous thin films with excellent conformality even at high aspect ratios. It is based on self-terminating sequential gas-solid reactions that allow a precise control of film thickness down to few Angstroms. In order to fabricate todays 3D electronic devices, technologies like ALD are required.

In spite of huge number of practical applications of nickel and nickel(II) oxide, a few nickel precursors are available for thermal based ALD. Moreover, these precursors have resulted in poor film qualities and the process properties were also limited. Therefore in this master thesis, the properties of various novel nickel precursors had to be evaluated. All novel precursors are heteroleptic (different types of ligands) complexes and were specially designed by the manufacturer for thermal based ALD of pure nickel with H 2 as a co-reactant.

In order to evaluate the novel precursors, a new methodology was designed to test small amounts (down to 2 g) of precursors in a very time efficient way. This methodology includes: TGA/DTA curve analyses of the precursors, thermal stability tests in which the precursors (< 0.1 g) were heated at elevated temperatures in a sealed environment for several hours, deposition experiments, and film characterizations. The depositions were monitored with the help of in situ quartz crystal microbalance, while application related film properties like chemical composition, physical phase, thickness, density, roughness and sheet resistance were investigated with the help of ex situ measurement techniques.

Prior to the evaluation of novel nickel precursors, a benchmark ALD process was developed from the reference nickel precursor (Ni(amd)) and air as a co-reactant. The main goal of developing and optimizing such benchmark ALD process was to extract standard process parameters like second-reactant exposure times, Argon purge times, total process pressure, starting deposition temperature and gas flows. These standard process parameters had to be utilized to shorten the process development task (thus saving precursor consumption) and optimize the sublimation temperature for each novel precursor. The ALD behaviour was checked in terms of growth rate by varying the nickel precursor exposure time, precursor temperature and deposition temperature.:Lists of Abbreviations and Symbols VIII
Lists of Figures and Tables XIV
1 Introduction 1
I Theoretical Part 3
2 Nickel and Nickel Oxides 4
2.1 Introduction and Existence 5
2.2 Material properties of Nickel and Nickel Oxide 5
2.3 Application in electronic industry 5
3 Atomic Layer Deposition 7
3.1 History 8
3.2 Definition 8
3.3 Features of thermal-ALD 8
3.3.1 ALD growth mechanism – an ideal view 8
3.3.2 ALD growth behaviour 10
3.3.3 Growth mode 11
3.3.4 ALD temperature window 11
3.4 Benefits and limitations 12
3.5 Precursor properties for thermal-ALD 13
3.6 ALD & CVD of Nickel – A literature survey 13
4 Metrology 17
4.1 Thermal analysis of precursors 18
4.2 Film and growth characterization 21
4.2.1 Quartz Crystal Microbalance 21
4.2.2 Spectroscopic Ellipsometry 24
4.2.3 X-Ray Photoelectron Spectroscopy 28
4.2.4 Scanning Electron Microscopy 29
4.2.5 X-Ray Reflectometry and X-Ray Diffraction 29
4.2.6 Four Point Probe Technique 20
5 Rapid Thermal Processing 32
5.1 Introduction 33
5.2 Basics of RTP 33
5.3 Nickel Silicides-A literature survey 33
II Experimental Part 36
6 Methodologies 37
6.1 Experimental setup 38
6.2 ALD process 41
6.2.1 ALD process types and substrate setups 41
6.2.2 Process parameters 41
6.3 Experimental procedure 42
6.3.1 Tool preparation 42
6.3.2 Thermal analysis and ALD experiments from nickel precursors 43
6.3.3 Data acquisition and evaluation 44
6.3.4 Characterization of film properties 46
7 Results and discussion 48
7.1 Introduction 49
7.2 QCM verification with Aluminum Oxide ALD process 49
7.3 ALD process from the reference precursor 50
7.3.1 Introduction 50
7.3.2 TG analysis for Ni(amd) precursor 51
7.3.3 Thermal stability test for Ni(amd) 51
7.3.4 ALD process optimization 52
7.3.5 Film properties 54
7.4 Evaluating the novel Nickel precursors 55
7.4.1 Screening tests for precursor P1 55
7.4.2 Screening tests for precursor P2 62
7.4.3 Screening tests for precursor P3 66
7.4.4 Screening tests for precursor P4 70
7.4.5 Screening tests for precursor P5 72
7.5 Comparison of all nickel precursors used in this work 74
8 Conclusions and outlook 77
References 83
III Appendix 101
A Deposition temperature control & Ellipsometry model 102
B Gas flow plan 105

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:28684
Date17 February 2015
CreatorsSharma, Varun
ContributorsHoßbach, Christoph, Bönhardt, Sascha, Bartha, Johann Wolfgang, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:masterThesis, info:eu-repo/semantics/masterThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0039 seconds