Return to search

Visualizing and Predicting the Effects of Rheumatoid Arthritis on Hands

This dissertation was inspired by difficult decisions patients of chronic diseases have to make about about treatment options in light of uncertainty. We look at rheumatoid arthritis (RA), a chronic, autoimmune disease that primarily affects the synovial joints of the hands and causes pain and deformities. In this work, we focus on several parts of a computer-based decision tool that patients can interact with using gestures, ask questions about the disease, and visualize possible futures. We propose a hand gesture based interaction method that is easily setup in a doctor's office and can be trained using a custom set of gestures that are least painful. Our system is versatile and can be used for operations like simple selections to navigating a 3D world. We propose a point distribution model (PDM) that is capable of modeling hand deformities that occur due to RA and a generalized fitting method for use on radiographs of hands. Using our shape model, we show novel visualization of disease progression. Using expertly staged radiographs, we propose a novel distance metric learning and embedding technique that can be used to automatically stage an unlabeled radiograph. Given a large set of expertly labeled radiographs, our data-driven approach can be used to extract different modes of deformation specific to a disease.

Identiferoai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:cs_etds-1020
Date01 January 2014
CreatorsMihail, Radu P
PublisherUKnowledge
Source SetsUniversity of Kentucky
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations--Computer Science

Page generated in 0.002 seconds