Return to search

The Use Of Pyrosequencing For The Analysis Of Y Chromosome Single Nucleotide Polymorphisms

The potential value of the Y chromosome for forensic applications has been recognized for some time with the current work dedicated to Short Tandem Repeat analysis and Single Nucleotide Polymorphism (SNP) discovery. This study examined the ability of two different SNP analysis methods to determine if they could be utilized in forensic applications and ultimately be developed into an established system for Y chromosome SNP analysis. This study examined two principle SNP analysis systems: single base extension and Pyrosequencing. Pyrosequencing was determined to be superior to single base extension, due to the wealth of information provided with sequencing and the flexibility of designing primers for analysis. Using Pyrosequencing, 50 Y chromosome loci were examined and the minimum loci required for maximum diversity for the development of a Y chromosome SNP analysis system were chosen. Thirteen loci were selected based on their ability to discriminate 60 different individuals from three different racial groups into 15 different haplogroups. The Y chromosome SNP analysis system developed utilized nested PCR for the amplification of all 13 loci. Then they were sequenced as groups, ranging from one to three loci, in a single reaction. The Y chromosome SNP analysis system developed here has the potential for forensic application since it has shown to be successful in the analysis of blood, buccal swabs, semen, and saliva, works with as little as 5 pg of starting DNA material, and will amplify only male DNA in the presence of male/female mixtures in which the female portion of the sample overwhelmed the male portion 30,000 to 1.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-1026
Date01 January 2004
CreatorsFletcher, Jeremy Charles
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations

Page generated in 0.0171 seconds