Return to search

The Study and Fabrication of Few-mode Cr4+:YAG Double-clad Crystal Fiber

Rapid development of fiber-optic communications network requirements increasing in recent years, The WDM technology and invention of anhydrous optical fiber open the possibility for optical fiber transmission bands broaden form 1.3 £gm to 1.6 £gm. Chromium doped yttrium aluminum garnet crystal fiber has characteristic of 300 nm broadband. Therefore, it¡¦s strongly desirable to develop a broadband fiber amplifier, laser or other active components for extending the flexibility of system architecture design in optical fiber communication.
A few-mode chromium doped yttrium aluminum garnet double-clad crystalline fibers has been demonstrated by employing a modified version of LHPG technique, means using silica-YAG crystal co-drawing and multiple core-tuning process by precisely controlled inter-diffusion between YAG core and silica tube. In this thesis, electron probe x-ray micro-analysis, energy dispersive spectroscopy and transmission electron microscopy were utilized to confirm this fiber structure and composition. This fiber has gross gain about 2.3 dB with dual pumped by few hundred mini Watt. Significantly reduce the pump power threshold. Compared with the last large core size, few-mode (small core size) chromium doped yttrium aluminum garnet double-clad crystalline fibers has lower heat effect and higher power efficiency. To enhance the optical properties towards few modes or even single mode, not only reduce the transmission loss, but improve the device efficiency.
Key words: Laser heated pedestal growth, Cr4+:YAG, Double-clad Crystal Fiber, gain

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0816112-155814
Date16 August 2012
CreatorsLiu, Li-Wei
ContributorsPi-Ling Huang, Wood-Hi Cheng, Chin-Ping Yu, Gong-Ru Lin, Sheng-Lung Huang
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0816112-155814
Rightsuser_define, Copyright information available at source archive

Page generated in 0.0021 seconds