Yeast are exposed to many physical and chemical stresses when used in large-scale industrial fermentations, particularly the initial stages in which yeast are shifted from anaerobic storage to aerated wort. This work investigated the transcriptional and physiological responses of yeast that had been shifted from anaerobic to aerobic growth conditions. Microarray technology was employed to determine the transcriptional changes that occurred in the first hour of a pilot-plant fermentation compared to the 23rd hour. It was found that over 100 genes were up-regulated initially including genes involved in the synthesis of the essential membrane sterol ergosterol and genes for the protection of cells against oxidative stress. It was also determined that cells which accumulate ergosterol precursors in the absence of ergosterol were more sensitive to exogenous oxidative stresses, indicating a role for ergosterol in oxidative stress tolerance. Aeration of anaerobically grown cells did not affect their growth kinetics or viability. However, anaerobically grown cells were hypersensitive to exogenous oxidative stress compared to their aerobic counterparts. Anaerobic cells that underwent a short period of aeration prior to treatment with hydrogen peroxide generated a tolerance to the oxidant, indicating that the period of aeration produced an adaptive-like response. Microarray analysis of the cells during the period of aeration showed that representative genes from the oxidative stress response family were up-regulated rapidly and it was determined that the response was controlled by the Yap1p and Skn7p transcription factors. Deletion of the transcription factor genes indicated that they were responsible for the creation of tolerance to oxidant. Target gene products of the two transcription factors (Gpx2p, Gsh1p and Trx2p) were shown to be induced during the shift to aeration; however, the glutathione redox balance did not seem to be affected as the cells were shifted from highly reduced to oxidising environments. Unexpectedly, it was discovered that genes involved in the synthesis of amino acids were up-regulated during anaerobic growth and stringently downregulated upon aeration of cells. The transcriptional activator of those genes (Gcn4p) was essential for growth in anaerobic media which included amino acid supplementation.
Identifer | oai:union.ndltd.org:ADTP/225972 |
Date | January 2006 |
Creators | Beckhouse, Anthony Gordon, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW |
Publisher | Awarded by:University of New South Wales. School of Biotechnology and Biomolecular Sciences |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | Copyright Anthony Gordon Beckhouse, http://unsworks.unsw.edu.au/copyright |
Page generated in 0.0018 seconds