Return to search

REFINING THE ONSET TIMING AND SLIP HISTORY ALONG THE NORTHERN PART OF THE TETON FAULT

A new apatite (U-Th)/He (AHe) dataset from subvertical transects collected in the Teton and Gallatin Ranges in the Teton-Yellowstone region provides insight for the slip history and length of the Teton fault. Along the northernmost segment of the Teton fault, inverse thermal history modeling of AHe data from Eagles Rest Peak yield a ~9 Ma age for onset of fault slip. This age supports previous interpretations that Mount Moran may be the true center of the Teton fault. This refined interpretation coupled with lengthdisplacement fault scaling analysis and previous estimates of total fault displacement (~6 km) indicates that the Teton fault may extend 50-90 km north of Mount Moran. However, this new data precludes the possibility that the Teton and East Gallatin faults represent the same structure. Yet, because these systems share a similar structure trend and initial slip ages (13 Ma and 16 Ma, respectively), they may still be related at a larger scale. To the south, the Teewinot transect yields the oldest onset age of ~32 Ma, however a >500 m vertical data gap in this transect leads us to cautiously interpret the results of this model, particularly as this age conflicts with four other transects along-strike.

Identiferoai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:ees_etds-1070
Date01 January 2019
CreatorsHoar, Rachel Montague
PublisherUKnowledge
Source SetsUniversity of Kentucky
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations--Earth and Environmental Sciences

Page generated in 0.0013 seconds