Return to search

Linker substitution in ZIF-8 and its effect on the selective uptake of the greenhouse gases CH4, CO2 and SF6

In this master thesis project, attempts were made to synthesize, pore size tailor, and characterize ZIF-8 and several mixed-linker ZIF structures to improve capture of the greenhouse gasses CH4, CO2, and SF6. Three experimental linkers, 2-methylbenzimidazole, 2-aminobenzimidazole, and 5-nitrobenzimidazole were chosen to gradually substitute 2-methylimidazole as the linker in ZIF-8.  This substitution was intended to gradually reduce pore sizes and possibly adding functionality to the apertures present in ZIF-8 (three different series). The methods of synthesis were first evaluated by performance and modified. Three series of ZIF-hybrids were then synthesized and characterized using PXRD, FTIR, 1HNMR, SEM, extensive sorption measurements, and subsequent modeling to evaluate any success tailoring the hybrid ZIF apertures to increase gas sorption. After modifying synthesis conditions, the undertaking was deemed a success as all three linkers were possible to incorporate to some degree. Hybrid ZIFs were mostly XRD-crystalline. The cleaning process was deemed sufficient. Linker incorporation was not complete but increased with the added linker. Sodalite topology was confirmed in ZIF-8 samples and confirmed as modified in hybrid ZIFs. The hybrid ZIFs did indeed show altered sorption results and surprisingly promising results regarding gas selectivity (favoring sorption of one gas over that of another).

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-434657
Date January 2021
CreatorsHedbom, Daniel
PublisherUppsala universitet, Nanoteknologi och funktionella material
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationUPTEC K, 1650-8297 ; 20040

Page generated in 0.0019 seconds