Ce travail vise à étudier un matériau biphasé métallique matrice/inclusion. Une méthode simple est proposée pour évaluer les propriétés élastiques d'une phase si les propriétés de l'autre phase sont connues. La méthode est basée à la fois sur un modèle d'homogénéisation inverse et sur les mesures de champs mécaniques par corrélation d'images numériques 2D. L'originalité de la méthode repose sur l'échelle étudiée, à savoir l'échelle de la microstructure du matériau : la taille caractéristique des inclusions est d'environ quelques dizaines de microns. L'évaluation est réalisée sur des essais de traction uniaxiale standards associés à un microscope longue distance. Cela permet d'observer la surface de l'échantillon à l'échelle de la microstructure au cours de la sollicitation mécanique. Tout d'abord, la précision de la méthode est examinée à partir de champs mécaniques 'parfaits' provenant des simulations numériques pour quatre microstructures : inclusions simples élastiques ou poreux ayant une forme sphérique ou cylindrique. Deuxièmement, cette précision est examinée sur les vrais champs mécaniques provenant des deux microstructures simples : une matrice métallique élasto-plastique contenant un ou quatre micro-trous cylindriques arrangés en un motif carré. Troisièmement, la méthode est utilisée pour évaluer les propriétés élastiques des inclusions de forme arbitraire dans un échantillon Zircaloy-4 oxydé présentant le gainage du combustible d'un réacteur à eau sous pression après un accident de perte de réfrigérant primaire (APRP). Dans toute cette étude, les phases sont supposées avoir des propriétés isotropes. / This work is focused on a matrix/inclusion metal composite. A simple method is proposed to evaluate the elastic properties of one phase while the properties of the other phase are assumed to be known. The method is based on both an inverse homogenization scheme and mechanical field's measurements by 2D digital image correlation. The originality of the approach rests on the scale studied, i.e. the microstructure scale of material: the characteristic size of the inclusions is about few tens of microns. The evaluation is performed on standard uniaxial tensile tests associated with a long-distance microscope. It allows observation of the surface of a specimen on the microstructure scale during the mechanical stress. First, the accuracy of the method is estimated on ‘perfect' mechanical fields coming from numerical simulations for four microstructures: elastic or porous single inclusions having either spherical or cylindrical shape. Second, this accuracy is estimated on real mechanical field for two simple microstructures: an elasto-plastic metallic matrix containing a single cylindrical micro void or four cylindrical micro voids arranged in a square pattern. Third, the method is used to evaluate elastic properties of inclusions with arbitrary shape in an oxidized Zircaloy-4 sample of the fuel cladding of a pressurized water reactor after an accident loss of coolant accident (LOCA). In all this study, the phases are assumed to have isotropic properties.
Identifer | oai:union.ndltd.org:theses.fr/2013MON20151 |
Date | 18 December 2013 |
Creators | Vo, Quoc Thang |
Contributors | Montpellier 2, Pagano, Stéphane, Monerie, Yann |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0016 seconds