Return to search

Synthesis of Mesoporous Metal Oxide Materials

abstract: Nanoporous crystalline oxides with high porosity and large surface areas are promising in catalysis, clean energy technologies and environmental applications all which require efficient chemical reactions at solid-solid, solid-liquid, and/or solid-gas interfaces. Achieving the balance between open porosity and structural stability is an ongoing challenge when synthesizing such porous materials. Increasing porosity while maintaining an open porous network usually comes at the cost of fragility, as seen for example in ultra low density, highly random porous aerogels. It has become increasingly important to develop synthetic techniques that produce materials with these desired properties while utilizing low cost precursors and increasing their structural strength. Based on non-alkoxide sol-gel chemistry, two novel synthetic methods for nanoporous metal oxides have been developed. The first is a high temperature combustion method that utilizes biorenewable oil, affording gamma alumina (Al2O3) with a surface area over 300 cm3/g and porosity over 80% and controllable pore sizes (average pore width 8 to 20 nm). The calcined crystalline products exhibit an aerogel-like textural mesoporosity. To demonstrate the versatility of the new method, it was used to synthesize highly porous amorphous silica (SiO2) which exhibited increased mechanical robustness while achieving a surface area of 960 m2/g and porosity of 85%. The second method utilizes sequential gelation of inorganic and organic precursors forming an interpenetrating inorganic/organic gel network. The method affords yttria-stabilized zirconia with surface area over 90 cm3/g and porosity over 60% and controllable pore sizes (average pore width 6 to 12 nm). X-ray diffraction, gas sorption analysis, Raman spectroscopy, nuclear magnetic resonance spectroscopy and electron microscopy were all used to characterize the structure, morphology, and the chemical structure of the newly afforded materials. Both novel methods produce products that show superior pore properties and robustness compared to equivalent commercially available and currently reported materials. / Dissertation/Thesis / Ph.D. Chemistry 2012

Identiferoai:union.ndltd.org:asu.edu/item:15165
Date January 2012
ContributorsLadd, Danielle Marie (Author), Seo, Don (Advisor), Haussermann, Ulrich (Committee member), Petuskey, William (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral Dissertation
Format163 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved

Page generated in 0.002 seconds