Return to search

Magnetic field of the magnetic chemically peculiar star V1148 Ori

This project aims to obtain and interpret the measurements of the mean longitudinal magnetic field of the chemically peculiar star V1148 Ori. To achieve this aim 12 spectropolarimetric observations obtained by the CFHT using the spectropolarimeter ESPaDOnS were used. The method used to extract the magnetic field signatures from the spectra is called least-squares deconvolution. This method yields line-averaged profiles with a high signal-to-noise ratio. These mean line profiles are necessary to compute the mean longitudinal field. Results of the mean longitudinal field measurements were plotted as a function of the rotational phase, and to this, a sinusoidal function describing a dipolar field was fitted. The dipolar field parameters were computed for two different stellar radii. Inconsistent values for the stellar radii were obtained from the literature, and therefore we calculated two values for each of the parameters. For the surface polar field strength, we found BR1 = 17.38±0.30 kG and BR2 = 12.81±0.22 kG. The calculations involving one of the stellar radii gave results more consistent with previous findings. However, the discrepancy in parameter values could not be accounted for by the small uncertainties. So no definite conclusions can be drawn about the dipolar field parameters. Our fit aligns well with our longitudinal field measurements, no clear indication of any significant deviation from our model assumption, which suggests that the mean longitudinal field is consistent with a large-scale dipolar-like structure.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-507881
Date January 2023
CreatorsPettersson, Kristoffer
PublisherUppsala universitet, Institutionen för fysik och astronomi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationFYSAST ; FYSKAND1170

Page generated in 0.0017 seconds