Return to search

The Bacterial Exo- and Endo-Cytoskeleton Spatially Confines Functional Membrane Microdomain Dynamics in \(Bacillus\) \(subtilis\) / Das bakterielle Außen- und Innenskelett begrenzt die Mobilität funktionaler Membranmikrodomänen in \(Bacillus\) \(subtilis\) räumlich

Cellular membranes form a boundary to shield the inside of a cell from the outside. This is of special importance for bacteria, unicellular organisms whose membranes are in direct contact with the environment. The membrane needs to allow the reception of information about beneficial and harmful environmental conditions for the cell to evoke an appropriate response. Information gathering is mediated by proteins that need to be correctly organized in the membrane to be able to transmit information. Several principles of membrane organization are known that show a heterogeneous distribution of membrane lipids and proteins. One of them is functional membrane microdomains (FMM) which are platforms with a distinct lipid and protein composition. FMM move within the membrane and their integrity is important for several cellular processes like signal transduction, membrane trafficking and cellular differentiation. FMM harbor the marker proteins flotillins which are scaffolding proteins that act as chaperones in tethering protein cargo to FMM. This enhances the efficiency of cargo protein oligomerization or complex formation which in turn is important for their functionality. The bacterium Bacillus subtilis contains two flotillin proteins, FloA and FloT. They form different FMM assemblies which are structurally similar, but differ in the protein cargo and thus in the specific function.
In this work, the mobility of FloA and FloT assemblies in the membrane was dissected using live-cell fluorescence microscopy techniques coupled to genetic, biochemical and molecular biological methods. A characteristic mobility pattern was observed which revealed that the mobility of both flotillins was spatially restricted. Restrictions were bigger for FloT resulting in a decreased diffusion coefficient compared to FloA. Flotillin mobility depends on the interplay of several factors. Firstly, the intrinsic properties of flotillins determine the binding of different protein interaction partners. These proteins directly affect the mobility of flotillins. Additionally, binding of interaction partners determines the assembly size of FloA and FloT. This indirectly affects the mobility, as the endo-cytoskeleton spatially restricts flotillin mobility in a size-dependent manner. Furthermore, the extracellular cell wall plays a dual role in flotillin mobility: its synthesis stimulates flotillin mobility, while at the same time its presence restricts flotillin mobility. As the intracellular flotillins do not have spatial access to the exo-cytoskeleton, this connection is likely mediated indirectly by their cell wall-associated protein interaction partners. Together the exo- and the endo-cytoskeleton restrict the mobility of FloA and FloT.
Similar structural restrictions of flotillin mobility have been reported for plant cells as well, where the actin cytoskeleton and the cell wall restrict flotillin mobility. These similarities between eukaryotic and prokaryotic cells indicate that the restriction of flotillin mobility might be a conserved mechanism. / Zelluläre Membranen bilden eine Barriere um das Zellinnere von dem -äußeren abzuschirmen. Das ist insbesondere bei Bakterien wichtig, einzellige Organismen, deren Membranen in direktem Kontakt zu ihrer Umgebung stehen. Die Membran muss es ermöglichen, Informationen über mögliche vorteilhafte oder schädliche Einflüsse in der Umgebung wahrzunehmen, damit die Zelle dementsprechend eine Reaktion initiieren kann. Die Informationsaufnahme und die resultierenden Reaktionen werden von Membranproteinen in Gang gesetzt, deren Organisation in der Membran Voraussetzung für ihre Funktionalität ist. Mehrere Prinzipien zur Membranorganisation sind bekannt, die alle eine heterogene Verteilung von Proteinen und Lipiden zu Grunde legen. Ein Beispiel für ein solches Prinzip sind funktionelle Membranmikrodomänen (FMM), Plattformen mit einer besonderen Lipid- und Proteinzusammensetzung. FMM bewegen sich in der Membran und ihre Integrität ist für viele zelluläre Prozesse wichtig, zum Beispiel für Signaltransduktion, Membrantransport oder zur zellulären Differenzierung. Flotilline sind Markerproteine für FMM. Sie bilden eine Art Gerüst und funktionieren als Chaperone, indem sie die sogenannten Frachtproteine in den FMM binden. Dort wird die Effizienz der Oligomerisierung oder Komplexbildung der Frachtproteine gesteigert, was für ihre Funktionalität und die ihrer assoziierten Prozesse von Bedeutung ist. In dem Bakterium Bacillus subtilis gibt es zwei Flotilline, FloA und FloT. Diese formen FMM Plattformen, die zwar strukturell ähnlich sind, sich aber in ihren Frachtproteinen und somit auch in ihren spezifischen Funktionen unterscheiden.
In dieser Arbeit wurde die Mobilität der FloA- und FloT-abhängigen Plattformen in der Membran untersucht. Dafür wurden Technologien der Fluoreszenzmikroskopie mit genetischen, biochemischen und molekularbiologischen Ansätzen kombiniert. Charakteristische Bewegungsmuster wurden beobachtet, die zeigten, dass die Beweglichkeit beider Flotilline räumlich begrenzt war. Dabei war die Einschränkung für FloT größer, und dementsprechend der Diffusionskoeffizient kleiner verglichen mit FloA. Die Mobilität von FloA und FloT hängt von dem Zusammenspiel mehrerer Faktoren ab. Zum einen bestimmen intrinsische Eigenschaften der Flotillinproteine ihre Fähigkeit verschiedene Interaktionspartner zu binden. Diese wirken sich dann direkt auf die Mobilität von Flotillinen aus. Des Weiteren bestimmt die Bindung verschiedener Interaktionspartner auch die Größe der FloA- und FloT- abhängigen Plattformen. Die resultierenden Größen beeinflussen die Mobilität indirekt, da das zelluläre Innenskelett die Flotillinmobilität räumlich in größenabhängiger Weise begrenzt. Außerdem spielt das Außenskelett der Zelle, die Zellwand, eine zweifache Rolle: die Zellwandsynthese fördert die Mobilität der Flotilline, während die Zellwand an sich gleichzeitig die Mobilität der Flotilline einschränkt. Da Flotilline räumlich keine Verbindung zum Außenskelett haben, wird diese Verbindung wahrscheinlich durch ihre Zellwand-assoziierten Interaktionspartner übermittelt. Zusammenfassend beschränken das Außen- und das Innenskelett die Mobilität von FloA und FloT.
In Pflanzen wurden ähnliche strukturelle Beschränkungen der Mobilität von Flotillinen durch das Aktin- Zytoskelett und die Zellwand beschrieben. Diese Ähnlichkeit zwischen prokaryotischen und eukaryotischen Zellen deutet darauf hin, dass die Beschränkung der Mobilität der Flotillin-Plattformen ein konservierter Mechanismus sein könnte.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:21745
Date January 2021
CreatorsWagner, Rabea Marie
Source SetsUniversity of Würzburg
LanguageEnglish
Detected LanguageGerman
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/zip, application/pdf
Rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.de, info:eu-repo/semantics/openAccess

Page generated in 0.0185 seconds