Core body temperature is an important physiological parameter used to identify whether a patient displays a normal, hypothermic, or hyperthermic state. It is routinely monitored during cardiac surgeries and general anesthesia. Currently, the most effective methods for measuring core body temperature are also the most invasive. While select devices have been designed to enable surface recording of internal temperature, none have been implemented in U.S.-based hospitals. The objective of this study was to create a noninvasive core temperature sensor and evaluate its potential of becoming a widely used clinical tool. In tissue phantom and human-based experiments, the prototype performed effectively and posed no safety risk. Provided the prototype can be successfully translated into a more streamlined medical device, it stands to become a staple in operating rooms around the nation. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/ETD-UT-2012-05-5603 |
Date | 26 July 2012 |
Creators | Cadic, Emily Kathleen |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Type | thesis |
Format | application/pdf |
Page generated in 0.0019 seconds