Return to search

The Riemann Hypothesis and the Distribution of Primes

The aim of this thesis is to examine the connection between the Riemannhypothesis and the distribution of prime numbers. We first derive theanalytic continuation of the zeta function and prove some of its propertiesusing a functional equation. Results from complex analysis such asJensen’s formula and Hadamard factorization are introduced to facilitatea deeper investigation of the zeros of the zeta function. Subsequently, therelation between these zeros and the asymptotic distribution of primesis rendered explicit: they determine the error term when the prime-counting function π(x) is approximated by the logarithmic integral li(x).We show that this absolute error is O(x exp(−c√log x) ) and that the Riemannhypothesis implies the significantly improved upper bound O(√x log x).

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-330264
Date January 2023
CreatorsAppelgren, David, Tikkanen, Leo
PublisherKTH, Skolan för teknikvetenskap (SCI)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-SCI-GRU ; 2023:108

Page generated in 0.0019 seconds