Nanotechnology is experiencing a flourishing development in a variety of fields covering all of the areas from science to engineering and to biology. As an active field in nanotechnology, the work presented in this dissertation is mostly focused on the fundamental study about the fabrication and assembly of functional oxide nanostructures. In particular, Zinc Oxide, one of the most important functional semiconducting materials, is the core objective of this research, from the controlled growth of nanoscale building blocks to understanding their properties and to how to organize these building blocks. Thermal evaporation process based on a single-zone tube furnace has been employed for synthesizing a range of 1D nanostructures. By controlling the experimental conditions, different morphologies, such as ultra-small ZnO nanobelts, mesoporous ZnO nanowires and core-shell nanowire were achieved. In order to pattern the nanostructures, a large-scale highly-ordered nanobowl structure based on the self-assembly of submicron spheres was created and utilized as patterning template. The growth and patterning techniques were thereafter integrated for aligning and patterning of ZnO nanowires. The aligning mechanisms and growth conditions were thoroughly studied so as to achieve a systematic control over the morphology, distribution and density. The related electronic and electromechanical properties of the aligned ZnO nanowires were investigated. The feasibility of some potential applications, such as photonic crystals, solar cells and sensor arrays, has also been studied. This research may set a foundation for many industrial applications from controlled synthesis to nanomanufacturing.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/7553 |
Date | 28 November 2005 |
Creators | Wang, Xudong |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Language | en_US |
Detected Language | English |
Type | Dissertation |
Format | 17742842 bytes, application/pdf |
Page generated in 0.0154 seconds