Return to search

Investigations in the Mechanism of Carbothermal Reduction of Yttria Stabilized Zirconia for Ultra-high Temperature Ceramics Application and Its Influence on Yttria Contained in It

Zirconium carbide (ZrC) is a high modulus ceramic with an ultra-high melting temperature and, consequently, is capable of withstanding extreme environments. Carbon-carbon composites (CCCs) are important structural materials in future hypersonic aircraft; however, these materials may be susceptible to degradation when exposed to elevated temperatures during extreme velocities. At speeds of exceeding Mach 5, intense heating of leading edges of the aircraft triggers rapid oxidation of carbon in CCCs resulting in degradation of the structure and probable failure. Environmental/thermal barrier coatings (EBC/TBC) are employed to protect airfoil structures from extreme conditions. Yttria stabilized zirconia (YSZ) is a well-known EBC/TBC material currently used to protect metallic turbine blades and other aerospace structures. In this work, 3 mol% YSZ has been studied as a potential EBC/TBC on CCCs. However, YSZ is an oxygen conductor and may not sufficiently slow the oxidation of the underlying CCC. Under appropriate conditions, ZrC can form at the interface between CCC and YSZ. Because ZrC is a poor oxygen ion conductor in addition to its stability at high temperatures, it can reduce the oxygen transport to the CCC and thus increase the service lifetime of the structure. This dissertation investigates the thermodynamics and kinetics of the YSZ/ZrC/CCC system and the resulting structural changes across multiple size scales. A series of experiments were conducted to understand the mechanisms and species involved in the carbothermal reduction of ZrO2 to form ZrC. 3 mol% YSZ and graphite powders were uniaxially pressed into pellets and reacted in a graphite (C) furnace. Rietveld x-ray diffraction phase quantification determined that greater fractions of ZrC were formed when carbon was the majority mobile species. These results were validated by modeling the process thermochemically and were confirmed with additional experiments. Measurements were conducted to examine the effect of carbothermal reduction on the bond lengths in YSZ and ZrC. Subsequent extended x-ray absorption fine structure (EXAFS) measurements and calculations showed Zr-O, Zr-C and Zr-Zr bond lengths to be unchanged after carbothermal reduction. Energy dispersive spectroscopy (EDS) line scan and mapping were carried out on carbothermaly reduced 3 mol% YSZ and 10 mol% YSZ powders. Results revealed Y2O3 stabilizer forming agglomerates with a very low solubility in ZrC.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc500159
Date05 1900
CreatorsSondhi, Anchal
ContributorsScharf, Thomas W., Reidy, Richard F., Williams, James C., Srivilliputhur, Srinivasan G., Du, Jincheng, Young, Marcus L.
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, Sondhi, Anchal, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.0018 seconds