Return to search

Optimized information processing in resource-constrained vision systems. From low-complexity coding to smart sensor networks

Vision systems have become ubiquitous. They are used for traffic monitoring, elderly care, video conferencing, virtual reality, surveillance, smart rooms, home automation, sport games analysis, industrial safety, medical care etc. In most vision systems, the data coming from the visual sensor(s) is processed before transmission in order to save communication bandwidth or achieve higher frame rates. The type of data processing needs to be chosen carefully depending on the targeted application, and taking into account the available memory, computational power, energy resources and bandwidth constraints.

In this dissertation, we investigate how a vision system should be built under practical constraints. First, this system should be intelligent, such that the right data is extracted from the video source. Second, when processing video data this intelligent vision system should know its own practical limitations, and should try to achieve the best possible output result that lies within its capabilities. We study and improve a wide range of vision systems for a variety of applications, which go together with different types of constraints.

First, we present a modulo-PCM-based coding algorithm for applications that demand very low complexity coding and need to preserve some of the advantageous properties of PCM coding (direct processing, random access, rate scalability). Our modulo-PCM coding scheme combines three well-known, simple, source coding strategies: PCM, binning, and interpolative coding. The encoder first analyzes the signal statistics in a very simple way. Then, based on these signal statistics, the encoder simply discards a number of bits of each image sample. The modulo-PCM decoder recovers the removed bits of each sample by using its received bits and side information which is generated by interpolating previous decoded signals. Our algorithm is especially appropriate for image coding. / Morbee, M. (2011). Optimized information processing in resource-constrained vision systems. From low-complexity coding to smart sensor networks [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/12126

Identiferoai:union.ndltd.org:upv.es/oai:riunet.upv.es:10251/12126
Date14 October 2011
CreatorsMORBEE, MARLEEN
ContributorsPrades Nebot, José, Philips, Wilfried, Aghajan, Hamid, Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
PublisherUniversitat Politècnica de València
Source SetsUniversitat Politècnica de València
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/acceptedVersion
SourceRiunet
Rightshttp://rightsstatements.org/vocab/InC/1.0/, info:eu-repo/semantics/openAccess

Page generated in 0.0031 seconds