Return to search

Defect clusters, nanoprecipitates and Brownian motion of particles in Mg-doped Co1-xO, Ti-doped Co1-xO, Ti-doped MgO and Zr-doped TiO2

In part I, MgO and Co1-xO powders in 9:1 and 1:9 molar ratio (denoted as M9C1 and M1C9 respectively) were sintered and homogenized at 1600oC followed by annealing at 850 and 800oC, respectively to form defect clusters and precipitates. Analytical electron microscopic (AEM) observations indicated the protoxide remained as rock salt structure with complicated planar diffraction contrast for M9C1 sample, however with spinel paracrystal precipitated from the M1C9 sample due to the assembly of charge- and volume-compensating defects of the 4:1 type, i.e. four octahedral vacant sites surrounding one Co3+-filled tetrahedral interstitial site. The spacing of such defect clusters is 4.5 times the lattice spacing of the average spinel structure of Mg-doped Co3-dO4, indicating a higher defect cluster concentration than undoped Co3-dO4. The {111} faulting of Mg-doped Co3-dO4/Co1-xO in the annealed M1C9 sample implies the possible presence of zinc blend-type defect clusters with cation vacancies assembled along oxygen close packed (111) plane.
In part II, the Mg2TiO4/MgO composites prepared by reactive sintering MgO and TiO2 powders (9:1 molar ratio) at 1600oC and then air-cooled or further aged at 900oC were studied by X-ray diffraction and (AEM) in order to characterize the microstructures and formation mechanism of nanosized Mg2TiO4 spinel precipitated from Ti-doped MgO. Expulsion of Ti4+ during cooling caused the formation of (001)-specific G.P. zone under the influence of thermal/sintering stress and then the spinel precipitates, which were about 30 nm in size and nearly spherical with {111} and {100} facets to minimize coherency strain energy and surface energy. Secondary nano-size spinel was precipitated and became site saturated during aging at 900oC, leaving a precipitate free zone at the grain boundaries of Ti-doped MgO. The intergranular spinel became progressively Ti-richer upon aging 900oC and showed <110>-specific diffuse scatter intensity likely due to short range ordering and/or onset decomposition.
In part III, the Co1-xO/Co2TiO4 composite prepared by reactive sintering CoO and TiO2 powders (9:1 molar ratio) at 1450oC and then air-cooled were studied by X-ray diffraction and AEM in order to characterize the microstructures and formation mechanism of nanosized Co2TiO4 spinel precipitated from Ti-doped Co1-xO. Slight expulsion of Ti4+ during cooling caused the precipitation of nanosize Co2TiO4 spinel. Bulk site saturation also caused impingement of the Co2TiO4 precipitates upon growth. The Co3-dO4 spinel, as an oxidatin product of Co1-xO, was found to form at free surface and the Co1-xO/Co2TiO4 interface. The Co2TiO4 spinel particles formed by reactive sintering rather than precipitation were able to detach from the Co1-xO grain boundaries to reach parallel epitaxial orientation with respect to the host Co1-xO grains via Brownian-type rotation of the embedded particles.
In part IV, AEM was used to study the defect microstructures of Zr-dissolved TiO2 prepared via reactive sintering the ZrO2 and TiO2 powders (8:92 in molar ratio, designated as Z8T92) at 1600oC for 24 h and then aged at 900oC for 2-200 h in air. The Zr-dissolved TiO2 with rutile structure showed dislocation arrays, defect clusters, G.P. zone, superlattice, nanometer-size domains incommensurate and commensurate superstructure, may be the precursor of ZrTi2O6 precipitates at 900oC. The rutile showed diffuse diffractions along [001] direction as a result of Zr4+ substitution for Ti4+ with volume compensating defect clusters. Incommensurate and commensurate structures, as indicated by diffraction splitting and extra diffraction along <100> and <010> directions may be attributed to the ordering and clustering process of Zr and Ti atoms in these directions.
Part V, deals with the reactive sintering of ZrO2 and TiO2 powders (1:4 molar ratio) at 1400 to 1600oC in air to form orthorhombic ZrTiO4 (a-PbO2-type structure, denoted as a) and to study its epitaxial reorientation in the matrix of tetragonal TiO2 (rutile) grains with Zr4+ (15 mol %) dissolution. The epitaxial relationship of intragranular ZrTiO4 and Zr-dissolved rutile (denoted as r) was determined by electron diffraction as [010]a//[011]r; (001)a // (011)r (i.e. [100]a // [100]r; (001)a // (011)r). The reorientation of the intragranular particles in the composites can be reasonably explained by rotation of the nonepitaxial particles above a critical temperature (T/Tm > 0.8) and below a critical particle size for anchorage release at interface with respect to the host grain. Reactive sintering facilitated the reoreientation process for the particles about to detach from the grain boundaries. The Brownian rotation of the confined ZrTiO4 particles in rutile grains was activated by a beneficial lower interfacial energy for the epitaxial relationship, typically forming lath-like ZrTiO4 with (101)a/(211)r habit plane having fair match of oxygen atoms at the interface. Further aging at 900oC for 50 h in air caused modulated and periodic antiphase domains in ZrTiO4 matrix, as likely precursor of equilibrium ZrTi2O6.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0712105-110029
Date12 July 2005
CreatorsYang, Kuo-Cheng
ContributorsKer-Chang Hsieh, Po-We Kao, S.L. Hwang, Shueiyuan Chen, Der shin Gan, Pouyan Shen
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0712105-110029
Rightsnot_available, Copyright information available at source archive

Page generated in 0.002 seconds