Return to search

Fatigue characteristics of concrete subjected to compressive cyclic loading: laboratory testing and numerical simulation

The fatigue characteristics of concrete are studied based on laboratory tests and numerical simulations. A series of compressive cyclic loading tests have been carried out on concrete samples. The effects of maximum and minimum load level on the evolution strain rate, energy dissipation, acoustic emissions (AE) and P-wave speed are analysed. Based on particle based numerical simulations, damage models corresponding to single-level and multi-level cyclic loading tests are proposed. The damage variable in the numerical model is time- and stress-dependent and is characterized by the progressive reduction of the bond diameter. The mechanical behaviour of concrete during cyclic loading tests is well reproduced in the numerical simulation. A real time fatigue failure prediction method is proposed based on the hysteresis occurrence ratio and hysteresis energy ratio. The AE characteristics during the laboratory tests are reproduced by the numerical simulations. AE counts and energy are characterized by broken bonds and released bond strain energy, respectively.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:38383
Date22 March 2020
CreatorsSong, Zhengyang
ContributorsKonietzky, Heinz, Mechtcherine, Viktor, Zhao, Yixin, TU Bergakademie Freiberg
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0818 seconds