Return to search

Donaldson-Thomas theory for Calabi-Yau four-folds.

令X 為個帶有凱勒形式(Kähler form ω) 以及全純四形式( holomorphic four- form Ω )的四維緊致卡拉比丘空間(Calabi-Yau manifolds) 。在一些假設條件下,通過研究Donaldson- Thomas方程所決定的模空間,我們定義了四維Donaldson-Thomas不變量。我們也對四維局部卡拉比丘空間(local Calabi-Yau four-folds) 定義了四維Donaldson-Thomas 不變量,並且將之聯繫到三維Fano空間的Donaldson- Thomas 不變量。在一些情況下,我們還研究了DT/GW不變量對應。最后,我們在模空間光滑時計算了一些四維Donaldson- Thomas不變量。 / Let X be a complex four-dimensional compact Calabi-Yau manifold equipped with a Kahler form ω and a holomorphic four-form Ω. Under certain assumptions, we de ne Donaldson-Thomas type deformation invariants by studying the moduli space of the solutions of Donaldson-Thomas equations on the given Calabi-Yau manifold. We also study sheaves counting on local Calabi-Yau four-folds. We relate the sheaves countings over X = KY with the Donaldson- Thomas invariants for the associated compact three-fold Y . In some specialcases, we prove the DT/GW correspondence for X. Finally, we compute the Donaldson-Thomas invariants of certain Calabi-Yau four-folds when the moduli spaces are smooth. / Detailed summary in vernacular field only. / Cao, Yalong. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 100-105). / Abstracts also in Chinese. / Chapter 1 --- Introduction --- p.6 / Chapter 2 --- The *4 operator --- p.18 / Chapter 2.1 --- The *4 operator for bundles --- p.18 / Chapter 2.2 --- The *4 operator for general coherent sheaves --- p.20 / Chapter 3 --- Local Kuranishi structure of DT₄ moduli spaces --- p.22 / Chapter 4 --- Compactification of DT₄ moduli spaces --- p.34 / Chapter 4.1 --- Stable bundles compactification of DT₄ moduli spaces --- p.34 / Chapter 4.2 --- Attempted general compactification of DT₄ moduli spaces --- p.36 / Chapter 5 --- Virtual cycle construction --- p.39 / Chapter 5.1 --- Virtual cycle construction for DT₄ moduli spaces --- p.40 / Chapter 5.2 --- Virtual cycle construction for generalized DT₄ moduli spaces --- p.48 / Chapter 6 --- DT4 invariants for compactly supported sheaves on local CY₄ --- p.52 / Chapter 6.1 --- The case of X = KY --- p.52 / Chapter 6.2 --- The case of X = T*S --- p.57 / Chapter 7 --- DT₄ invariants on toric CY₄ via localization --- p.66 / Chapter 8 --- Computational examples --- p.70 / Chapter 8.1 --- DT₄=GW correspondence in some special cases --- p.71 / Chapter 8.1.1 --- The case of Hol(X) = SU(4) --- p.72 / Chapter 8.1.2 --- The case of Hol(X) = Sp(2) --- p.77 / Chapter 8.2 --- Some remarks on cosection localizations for hyper-kähler four-folds --- p.79 / Chapter 8.3 --- Li-Qin's examples --- p.80 / Chapter 8.4 --- Moduli space of ideal sheaves of one point --- p.83 / Chapter 9 --- Appendix --- p.85 / Chapter 9.1 --- Local Kuranishi models of Mc° --- p.85 / Chapter 9.2 --- Some remarks on the orientability of the determinant line bundles on the (generalized) DT₄ moduli spaces --- p.87 / Chapter 9.3 --- Seidel-Thomas twists --- p.90 / Chapter 9.4 --- A quiver representation of Mc --- p.92

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_328768
Date January 2013
ContributorsCao, Yalong., Chinese University of Hong Kong Graduate School. Division of Mathematics.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatelectronic resource, electronic resource, remote, 1 online resource (105 leaves)
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0022 seconds