Return to search

Friction stir processing of aluminium-silicon alloys

Friction Stir Processing (FSP) has the potential for locally enhancing the properties of Al-Si alloy castings, for demanding applications within the automotive industry. In this thesis, the effect of FSP has been examined on three different cast Al-Si alloys:i) A Hypoeutectic Al-8.9wt%Si Alloyii) A Hypereutectic Al-12.1wt%Si Alloyiii) A Hypereutectic Al-12.1wt%Si-2.4wt%Ni AlloyThe influence of different processing parameters has been investigated at a fundamental level. Image analysis of particle size distributions and growth method of tessellation were used to quantify the level of particle refinement and the homogeneity of the second phase spatial distribution. Stop-action experiments were also carried out, to allow the microstructural changes around the tool during FSP to be studied. Two computer models have been explored, in order to predict the temperature distribution and the material flow behaviour. Furthermore, the stability of the microstructure of the friction stir processed material was studied after being heat treated at elevated temperatures. The changes in particle size and grain structure were examined, hardness measurements were taken across the PZ, and tensile testing were carried out at room and elevated temperatures.After FSP, the microstructure of the cast Al-Si alloys was greatly refined. However, differences in microstructure have been observed throughout the PZ, which tended to be better refined and distributed on the advancing side, than the retreating side of the PZ. Changing the processing parameters also influenced the size and spatial distribution of the second phase particles. By studying the changes in microstructure around the tool from the stop-action experiments, and comparing the results to the thermal distribution and material flow behaviour predicted by the computer models, it has been shown that the flow stress, pitch, and temperature of processing, all needed to be considered, when determining the effects that FSP have on the microstructure. FSP caused very little changes to the hardness of the material, while tensile properties were greatly improved, due to the elimination of porosity and refinement of large flawed particles. In terms of the stability of the microstructure after FSP, particle coarsening and abnormal grain growth has been observed during high temperatures heat treatment. Furthermore, the Al2Cu phase was found to dissolve into solid solution at elevated temperatures, so GPZs and solute clustering can then develop within the alloy during natural ageing.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:542751
Date January 2011
CreatorsChan, Chun Yip
ContributorsPrangnell, Philip
PublisherUniversity of Manchester
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://www.research.manchester.ac.uk/portal/en/theses/friction-stir-processing-of-aluminiumsilicon-alloys(0ffc1328-0a9d-4220-ab31-ee52173ed3a1).html

Page generated in 0.0018 seconds