NiSi and Ni(Pt)Si, and of the effects of dissociated ammonia on oxide reduction was carried out under controlled ultrahigh vacuum (UHV) conditions. X-ray photoelectron spectroscopy (XPS) has been used to characterize the evolution of surface composition. Vicinal surfaces on NiSi and Ni(Pt)Si were formed in UHV by a combination of Ar+ sputtering and thermal annealing. Oxidation of these surfaces in the presence of either O+O2 or pure O2 at room temperature results in the initial formation of a SiO2 layer ~ 7 Å thick. Subsequent exposure to O2 yields no further oxidation. Continued exposure to O+O2, however, results in rapid silicon consumption and, at higher exposures, the kinetically-driven oxidation of the transition metal(s), with oxides >35Ǻ thick formed on all samples, without passivation. The addition of Pt retards but does not eliminate oxide growth or Ni oxidation. At higher exposures, in Ni(Pt)Si surface the kinetically-limited oxidation of Pt results in Pt silicate formation. Substrate dopant type has almost no effect on oxidation rate. Reduction of the silicon oxide/metal silicate is carried out by reacting with dissociated NH3 at room temperature. The reduction from dissociated ammonia (NHx+H) on silicon oxide/ metal silicate layer shows selective reduction of the metal oxide/silicate layer, but does not react with SiO2 at ambient temperature.
Identifer | oai:union.ndltd.org:unt.edu/info:ark/67531/metadc31542 |
Date | 08 1900 |
Creators | Manandhar, Sudha |
Contributors | Kelber, Jeffry Alan, 1952-, Cooke, Steven A., Cundari, Thomas, Acree, William E. (William Eugene) |
Publisher | University of North Texas |
Source Sets | University of North Texas |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Format | xi, 103 p. : ill., Text |
Rights | Public, Copyright, Manandhar, Sudha, Copyright is held by the author, unless otherwise noted. All rights reserved. |
Page generated in 0.0023 seconds