Return to search

Computational Fluid Dynamics (CFD) Evaluation of Non-planar Stent Graft Configurations in Endovascular Aneurysm Repair (EVAR)

Crossing of stent graft limbs during endovascular aneurysm repair (EVAR) is often used to assist cannulation and prevent graft kinking when the aortic bifurcation is widely splayed. Little has been reported about the implications of cross-limb EVAR, especially in comparison to conventional EVAR. Using computational fluid dynamics, this work numerically examines the hemodynamic differences between these two out-of-plane stent graft configurations against a planar configuration commonly found in literature. Predicted values of displacement force, wall shear stress, and oscillatory shear index were similar between the out-of-plane configurations. The planar configuration predicted similar wall shear stress values, but significantly lower displacement forces than the out-of-plane configurations. These results suggest that the hemodynamic safety of cross-limb EVAR is comparable to conventional EVAR. However, a study of clinical outcomes may reveal reduced thrombosis incidence and long-term structural implications for the stent graft in cross-limb EVAR.

Identiferoai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/31439
Date20 December 2011
CreatorsShek, Lok Ting
ContributorsAmon, Cristina
Source SetsUniversity of Toronto
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0014 seconds