The formation of the tropylium ion, C7H7+, in the mass spectrum of toluene is a chemical process that has been studied extensively in the past. The advances in computational power of personal computers have made the investigation of the pathway to form this ion and its subsequent decomposition feasible at a fairly high level of theory. The calculations that we performed were at the HF/6-31G (d, p) and the B3LYP/6-311++G (2d) levels. This work will show areas of the potential energy surface around the highly symmetric tropylium ion to give a glance of possible mechanisms for its formation and decomposition. Our results have confirmed some of the mechanisms reported in the literature, and in addition new areas are explored in the report.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etd-2201 |
Date | 16 August 2005 |
Creators | Bullins, Kenneth Wayne |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Rights | Copyright by the authors. |
Page generated in 0.0017 seconds